A Decomposition Method for Large-Scale Sparse Coding in Representation Learning

被引:0
作者
Li, Yifeng [1 ]
Caron, Richard J. [2 ]
Ngom, Alioune [3 ]
机构
[1] Univ British Columbia, CMMT, Child & Family Res Inst, Vancouver, BC V5Z 1M9, Canada
[2] Univ Windsor, Math & Stat, Windsor, ON N9B 3P4, Canada
[3] Univ Windsor, Sch Comp Sci, Windsor, ON N9B 3P4, Canada
来源
PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2014年
关键词
CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In representation learning, sparse representation is a parsimonious principle that a sample can be approximated by a sparse superposition of dictionary atoms. Sparse coding is the core of this technique. Since the dictionary is often redundant, the dictionary size can be very large. Many optimization methods have been proposed in the literature for sparse coding. However, the efficiency of the optimization for a tremendous number of dictionary atoms is still a bottleneck. In this paper, we propose to use decomposition method for large-scale sparse coding models. Our experimental results show that our method is very efficient.
引用
收藏
页码:3732 / 3738
页数:7
相关论文
共 50 条
  • [11] Large-scale Pollen Recognition with Deep Learning
    de Geus, Andre R.
    Barcelos, Celia A. Z.
    Batista, Marcos A.
    da Silva, Sergio F.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [12] Cancer mutational signatures representation by large-scale context embedding
    Zhang, Yang
    Xiao, Yunxuan
    Yang, Muyu
    Ma, Jian
    BIOINFORMATICS, 2020, 36 : 309 - 316
  • [13] Learning with joint sparse representation
    Li, Jianyuan
    Guan, Jihong
    International Journal of Advancements in Computing Technology, 2012, 4 (06) : 184 - 191
  • [14] A Progressive Learning Strategy for Large-Scale Glacier Mapping
    Xie, Zhiyuan
    Haritashya, Umesh K.
    Asari, Vijayan K.
    IEEE ACCESS, 2022, 10 : 72615 - 72627
  • [15] Large-Scale Image Classification Using Active Learning
    Alajlan, Naif
    Pasolli, Edoardo
    Melgani, Farid
    Franzoso, Andrea
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 259 - 263
  • [16] Quick extreme learning machine for large-scale classification
    Audi Albtoush
    Manuel Fernández-Delgado
    Eva Cernadas
    Senén Barro
    Neural Computing and Applications, 2022, 34 : 5923 - 5938
  • [17] Quick extreme learning machine for large-scale classification
    Albtoush, Audi
    Fernandez-Delgado, Manuel
    Cernadas, Eva
    Barro, Senen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (08) : 5923 - 5938
  • [18] Topic modeling and improvement of image representation for large-scale image retrieval
    Nguyen Anh Tu
    Dong-Luong Dinh
    Rasel, Mostofa Kamal
    Lee, Young-Koo
    INFORMATION SCIENCES, 2016, 366 : 99 - 120
  • [19] Large-scale IoT malware analysis and classification method
    He Q.
    Wang L.
    Luo B.
    Yang L.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (02): : 240 - 248
  • [20] Sparse coding and normalization for deep Fisher score representation
    Xu, Sixiang
    Muselet, Damien
    Tremeau, Alain
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 220