Time Course of Alterations in Adult Spinal Motoneuron Properties in the SOD1(G93A) Mouse Model of ALS

被引:24
作者
Huh, Seoan [1 ]
Heckman, Charles J. [1 ,2 ,3 ]
Manuel, Marin [1 ,4 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Physiol, Chicago, IL 60611 USA
[2] Northwestern Univ, Feinberg Sch Med, Dept Phys Med & Rehabil, Chicago, IL 60611 USA
[3] Northwestern Univ, Feinberg Sch Med, Dept Phys Therapy & Human Movement Sci, Chicago, IL 60611 USA
[4] Univ Paris, St Peres Paris Inst Neurosci SPPIN, CNRS, F-75006 Paris, France
基金
美国国家科学基金会;
关键词
ALS; electrophysiology; homeostasis; in vivo recording; motor neuron; spinal cord; MOTOR UNIT LOSS; INTRINSIC-PROPERTIES; PERSISTENT SODIUM; IN-VIVO; HYPEREXCITABILITY; DISEASE; NEURON; CALCIUM; HOMEOSTASIS; RANGE;
D O I
10.1523/ENEURO.0378-20.2021
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Although amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease, motoneuron electrical properties are already altered during embryonic development. Motoneurons must therefore exhibit a remarkable capacity for homeostatic regulation to maintain a normal motor output for most of the life of the patient. In the present article, we demonstrate how maintaining homeostasis could come at a very high cost. We studied the excitability of spinal motoneurons from young adult SOD1(G93A) mice to end-stage. Initially, homeostasis is highly successful in maintaining their overall excitability. This initial success, however, is achieved by pushing some cells far above the normal range of passive and active conductances. As the disease progresses, both passive and active conductances shrink below normal values in the surviving cells. This shrinkage may thus promote survival, implying the previously large values contribute to degeneration. These results support the hypothesis that motoneuronal homeostasis may be "hypervigilant" in ALS and a source of accumulating stress.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 67 条
  • [1] An energy budget for signaling in the grey matter of the brain
    Attwell, D
    Laughlin, SB
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (10) : 1133 - 1145
  • [2] Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS
    Baczyk, Marcin
    Alami, Najwa Ouali
    Delestree, Nicolas
    Martinot, Clemence
    Tang, Linyun
    Commisso, Barbara
    Bayer, David
    Doisne, Nicolas
    Frankel, Wayne
    Manuel, Marin
    Roselli, Francesco
    Zytnicki, Daniel
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2020, 217 (08)
  • [3] Bernard C, 2019, ENEURO, V6
  • [4] Recurrent excitation between motoneurones propagates across segments and is purely glutamatergic
    Bhumbra, Gardave S.
    Beato, Marco
    [J]. PLOS BIOLOGY, 2018, 16 (03)
  • [5] Escape from homeostasis: spinal microcircuits and progression of amyotrophic lateral sclerosis
    Brownstone, Robert M.
    Lancelin, Camille
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2018, 119 (05) : 1782 - 1794
  • [6] Burke RE., 1981, Handbook of Physiology, The Nervous System, Motor Control, P345, DOI [10.1002/cphy.cp010210, DOI 10.1002/CPHY.CP010210]
  • [7] The New Statistics: Why and How
    Cumming, Geoff
    [J]. PSYCHOLOGICAL SCIENCE, 2014, 25 (01) : 7 - 29
  • [8] Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis
    Delestree, Nicolas
    Manuel, Marin
    Iglesias, Caroline
    Elbasiouny, Sherif M.
    Heckman, C. J.
    Zytnicki, Daniel
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2014, 592 (07): : 1687 - 1703
  • [9] The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis
    Dukkipati, S. Shekar
    Garrett, Teresa L.
    Elbasiouny, Sherif M.
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2018, 596 (09): : 1723 - 1745
  • [10] Calcium dysregulation in amyotrophic lateral sclerosis
    Grosskreutz, Julian
    Van Den Bosch, Ludo
    Keller, Bernhard U.
    [J]. CELL CALCIUM, 2010, 47 (02) : 165 - 174