Reconstruction of opinion dynamics network with bounded confidence via compressive sensing
被引:0
作者:
Liu, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Syst & Control, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Key Lab Syst & Control, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Liu, Juan
[1
]
Liu, Kexin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Syst & Control, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Key Lab Syst & Control, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Liu, Kexin
[1
]
Lu, Jinhu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Syst & Control, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Key Lab Syst & Control, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Lu, Jinhu
[1
]
机构:
[1] Chinese Acad Sci, Key Lab Syst & Control, Acad Math & Syst Sci, Beijing 100190, Peoples R China
来源:
PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016
|
2016年
关键词:
Complex Networks;
Opinion Dynamics;
Compressive Sensing;
Time Series;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
In recent years opinion dynamics has been widely used in political and economy. In this article we present a opinion dynamics model where agents show discrete actions and continuous opinions in a social network. Our model combines bounded confidence and real society network which differs from previous regular networks. In real life, the structure of social networks are often unknown, so uncovering the interacting structure of the underlying network is the key to get final opinions. Based on the sparse of social networks and observed time series, we use compressive sensing, an efficient way to reconstructing the social network where the opinion updates take place. We find that with a smaller threshold a better success rate of recovering is obtained. Also with the threshold increasing more final opinions survive at last. And the density of network also affects the final opinions.
机构:
Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
Santa Fe Inst, Santa Fe, NM 87501 USAUniv New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
Clauset, Aaron
论文数: 引用数:
h-index:
机构:
Moore, Cristopher
Newman, M. E. J.
论文数: 0引用数: 0
h-index: 0
机构:
Santa Fe Inst, Santa Fe, NM 87501 USA
Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USAUniv New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
机构:
Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
Santa Fe Inst, Santa Fe, NM 87501 USAUniv New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
Clauset, Aaron
论文数: 引用数:
h-index:
机构:
Moore, Cristopher
Newman, M. E. J.
论文数: 0引用数: 0
h-index: 0
机构:
Santa Fe Inst, Santa Fe, NM 87501 USA
Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USAUniv New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA