The development and advantages of beryllium capsules for the National Ignition Facility

被引:153
作者
Wilson, DC
Bradley, PA
Hoffman, NM
Swenson, FJ
Smitherman, DP
Chrien, RE
Margevicius, RW
Thoma, DJ
Foreman, LR
Hoffer, JK
Goldman, SR
Caldwell, SE
Dittrich, TR
Haan, SW
Marinak, MM
Pollaine, SM
Sanchez, JJ
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
关键词
D O I
10.1063/1.872865
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Capsules with beryllium ablators have long been considered as alternatives to plastic for the National Ignition Facility laser [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]; now the superior performance of beryllium is becoming well substantiated. Beryllium capsules have the advantages of high density, low opacity, high tensile strength, and high thermal conductivity. Three-dimensional (3-D) calculations with the HYDRA code [NTIS Document No. DE-96004569 (M. M. Marinak et al. in UCRL-LR-105821-95-3)] confirm two-dimensional (2-D) LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasmas Phys. Controlled Thermonucl. Fusion 2, 51 (1975)] results that particular beryllium capsule designs are several times less sensitive than the CH point design to instability growth from deuterium-tritium (DT) ice roughness. These capsule designs contain more ablator mass and leave some beryllium unablated at ignition. By adjusting the level of copper dopant, the unablated mass can increase or decrease, with a corresponding decrease or increase in sensitivity to perturbations. A plastic capsule with the same ablator mass as the beryllium and leaving the same unablated mass also shows this reduced perturbation sensitivity. Beryllium's low opacity permits the creation of 250 eV capsule designs. Its high tensile strength allows it to contain DT fuel at room temperature. Its high thermal conductivity simplifies cryogenic fielding. (C) 1998 American Institute of Physics.
引用
收藏
页码:1953 / 1959
页数:7
相关论文
共 24 条
  • [1] AHLSTROM HG, 1982, PHYSICS LASER FUSION, V2
  • [2] BRADLEY PA, 1996, B AM PHYS SOC, V41, P1557
  • [3] CALDWELL SE, 1997, B AM PHYS SOC, V42, P1952
  • [4] NIF capsule design update
    Dittrich, TR
    Haan, SW
    Pollaine, S
    Burnham, AK
    Strobel, GL
    [J]. FUSION TECHNOLOGY, 1997, 31 (04): : 402 - 405
  • [5] DITTRICH TR, 1997, B AM PHYS SOC, V42, P1895
  • [6] DESIGN AND MODELING OF IGNITION TARGETS FOR THE NATIONAL IGNITION FACILITY
    HAAN, SW
    POLLAINE, SM
    LINDL, JD
    SUTER, LJ
    BERGER, RL
    POWERS, LV
    ALLEY, WE
    AMENDT, PA
    FUTTERMAN, JA
    LEVEDAHL, WK
    ROSEN, MD
    ROWLEY, DP
    SACKS, RA
    SHESTAKOV, AI
    STROBEL, GL
    TABAK, M
    WEBER, SV
    ZIMMERMAN, GB
    KRAUSER, WJ
    WILSON, DC
    COGGESHALL, SV
    HARRIS, DB
    HOFFMAN, NM
    WILDE, BH
    [J]. PHYSICS OF PLASMAS, 1995, 2 (06) : 2480 - 2487
  • [7] HOFFER JK, 1997, B AM PHYS SOC, V42, P2031
  • [8] Hoffman NM, 1996, AIP CONF PROC, P166, DOI 10.1063/1.50371
  • [9] HUNDLEY MF, COMMUNICATION
  • [10] Ignition target design and robustness studies for the National Ignition Facility
    Krauser, WJ
    Hoffman, NM
    Wilson, DC
    Wilde, BH
    Varnum, WS
    Harris, DB
    Swenson, FJ
    Bradley, PA
    Haan, SW
    Pollaine, SM
    Wan, AS
    Moreno, JC
    Amendt, PA
    [J]. PHYSICS OF PLASMAS, 1996, 3 (05) : 2084 - 2093