A Vibration Energy Harvester With Targeted Frequency-Tuning Capability

被引:15
|
作者
Li, Yunjia [1 ]
Zhou, Chenyuan [1 ]
Wang, Xinyi [1 ]
Wang, Junyuan [1 ]
Qiao, Dayong [2 ]
Tao, Kai [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, Xian 710049, Peoples R China
[2] Northwestern Polytech Univ, Key Lab Micro Nano Syst Aerosp, Minist Educ, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Electromagnetic vibration energy harvester (EVEH); frequency-tuning structures; polyimide; DESIGN;
D O I
10.1109/TIM.2022.3175984
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the major challenges for vibration energy harvesters is to match their resonant frequency with ambient vibration frequency. The main limitation of the existing frequency-tuning techniques is the uncontrollable tuning process, i.e., the incapability of tuning the frequency to a desired value. Jo this article, we report a tunable electromagnetic vibration energy harvester (EVEN) capable of being tuned to a specific target frequency. The device adjusts the resonant frequency by changing the effective length of two polyimide springs through a set of smart tuning structures with scales. A maximum frequency-tuning range of 58 Hz (46-104 Hz, 126% relative tuning range) is realized with the proposed device. At a sinusoidal acceleration of 1 g, an output peak-to-peak voltage of 263.4 mV and an output power of 143.6 mu W are obtained at the frequency of 56 Hz.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Numerical and experimental investigation of an auxetic piezoelectric energy harvester with frequency self-tuning capability
    Zhang, Huili
    Chen, Shun
    Karimi, Mahmoud
    Li, Binghao
    Saydam, Serkan
    Hassan, Mahbub
    SMART MATERIALS AND STRUCTURES, 2024, 33 (05)
  • [2] Innovative electromagnetic vibration energy harvester with free-rotating mass for passive resonant frequency tuning
    Ells, David Alexander
    Mechefske, Christopher
    Lai, Yongjun
    APPLIED ENERGY, 2025, 377
  • [3] A Frequency-Adjustable Tuning Fork Electromagnetic Energy Harvester
    Wu, Qinghe
    Gao, Shiqiao
    Jin, Lei
    Guo, Shengkai
    Yin, Zuozong
    Fu, He
    MATERIALS, 2022, 15 (06)
  • [4] Fully Integrated Frequency-Tuning Switched-Capacitor Rectifier for Piezoelectric Energy Harvesting
    Xie, Chao
    Zhao, Guangshu
    Ma, Yuan
    Law, Man-Kay
    Zhang, Milin
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2023, 58 (08) : 2337 - 2348
  • [5] Broadband High Frequency Power Conversion With Frequency-Tuning Matching Network
    Ye, Zhechi
    Rivas, Juan
    IEEE OPEN JOURNAL OF POWER ELECTRONICS, 2025, 6 : 120 - 129
  • [6] Electromagnetic energy harvester for harvesting energy from low-frequency vibration
    Zhang, K.
    Su, Y.
    Ding, J.
    Zhang, Z.
    2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [7] Multimode auxetic piezoelectric energy harvester for low-frequency vibration
    He, Longfei
    Kurita, Hiroki
    Narita, Fumio
    SMART MATERIALS AND STRUCTURES, 2024, 33 (03)
  • [8] An analytical model for a piezoelectric vibration energy harvester with resonance frequency tunability
    Wang, Yun
    He, Hailang
    Xu, Rongqiao
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (06) : 1 - 8
  • [9] A nonlinear electromagnetic vibration energy harvester lubricated by magnetic fluid for low-frequency vibration
    Yu, Jun
    Yao, Jie
    Li, Decai
    Yu, Jianping
    Xiao, Huiyun
    Zhang, Haifeng
    Shang, Jie
    Wu, Yuanzhao
    Liu, Yiwei
    Li, Run-Wei
    APPLIED PHYSICS LETTERS, 2023, 123 (04)
  • [10] Analysis on the power and bandwidth improvement of a frequency-tuning optimized SECE circuit
    Tian, Wendi
    Zhao, Zixiang
    Liu, Weiqun
    Zhu, Qiao
    Zhang, Zutao
    Yuan, Yanping
    SENSORS AND ACTUATORS A-PHYSICAL, 2021, 332