High-speed computer-generated holography using an autoencoder-based deep neural network

被引:178
作者
Wu, Jiachen [1 ]
Liu, Kexuan [1 ]
Sui, Xiaomeng [1 ]
Cao, Liangcai [1 ]
机构
[1] Tsinghua Univ, Dept Precis Instruments, State Key Lab Precis Measurement Technol & Instru, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE; IMAGE; DISPLAY;
D O I
10.1364/OL.425485
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Learning-based computer-generated holography (CGH) provides a rapid hologram generation approach for holographic displays. Supervised training requires a large-scale dataset with target images and corresponding holograms. We propose an autoencoder-based neural network (holoencoder) for phase-only hologram generation. Physical diffraction propagation was incorporated into the autoencoder's decoding part. The holoencoder can automatically learn the latent encodings of phase-only holograms in an unsupervised manner. The proposed holoencoder was able to generate high-fidelity 4K resolution holograms in 0.15 s. The reconstruction results validate the good generalizability of the holoencoder, and the experiments show fewer speckles in the reconstructed image compared with the existing CGH algorithms. (C) 2021 Optical Society of America.
引用
收藏
页码:2908 / 2911
页数:4
相关论文
共 26 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]   Wirtinger Holography for Near-Eye Displays [J].
Chakravarthula, Praneeth ;
Peng, Yifan ;
Kollin, Joel ;
Fuchs, Henry ;
Heide, Felix .
ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (06)
[3]   Optimizing image quality for holographic near-eye displays with Michelson Holography [J].
Choi, Suyeon ;
Kim, Jonghyun ;
Peng, Yifan ;
Wetzstein, Gordon .
OPTICA, 2021, 8 (02) :143-146
[4]   DeepCGH: 3D computer-generated holography using deep learning [J].
Eybposh, M. Hossein ;
Caira, Nicholas W. ;
Atisa, Mathew ;
Chakravarthula, Praneeth ;
Pegard, Nicolas C. .
OPTICS EXPRESS, 2020, 28 (18) :26636-26650
[5]  
GERCHBERG RW, 1972, OPTIK, V35, P237
[6]   Deep-learning-based binary hologram [J].
Goi, Hiroaki ;
Komuro, Koshi ;
Nomura, Takanori .
APPLIED OPTICS, 2020, 59 (23) :7103-7108
[7]   Deep-learning-generated holography [J].
Horisaki, Ryoichi ;
Takagi, Ryosuke ;
Tanida, Jun .
APPLIED OPTICS, 2018, 57 (14) :3859-3863
[8]   Near-perfect hologram reconstruction with a spatial light modulator [J].
Jesacher, Alexander ;
Maurer, Christian ;
Schwaighofer, Andreas ;
Bernet, Stefan ;
Ritsch-Marte, Monika .
OPTICS EXPRESS, 2008, 16 (04) :2597-2603
[9]   Compression of Phase-Only Holograms with JPEG Standard and Deep Learning [J].
Jiao, Shuming ;
Jin, Zhi ;
Chang, Chenliang ;
Zhou, Changyuan ;
Zou, Wenbin ;
Li, Xia .
APPLIED SCIENCES-BASEL, 2018, 8 (08)
[10]   Perceptual Losses for Real-Time Style Transfer and Super-Resolution [J].
Johnson, Justin ;
Alahi, Alexandre ;
Li Fei-Fei .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :694-711