SAR imagery segmentation by statistical region growing and hierarchical merging

被引:39
作者
Carvalho, E. A. [1 ]
Ushizima, D. M. [2 ,3 ]
Medeiros, F. N. S. [1 ]
Martins, C. I. O. [1 ]
Marques, R. C. P. [1 ]
Oliveira, I. N. S. [4 ]
机构
[1] Univ Fed Ceara, Grp Proc Imagens, Dept Teleinformat DETI, Fortaleza, Ceara, Brazil
[2] Lawrence Berkeley Natl Lab, Math Grp, Berkeley, CA USA
[3] Lawrence Berkeley Natl Lab, Visualizat Grp, Berkeley, CA USA
[4] Univ Fed Ceara, Dept Elect Engn, Fortaleza, Ceara, Brazil
关键词
SAR image segmentation; Region growing; Hierarchical merging; Hypothesis testing; Speckle noise; EDGE; NOISE; ENHANCEMENT; DETECTOR; MODEL;
D O I
10.1016/j.dsp.2009.10.014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an algorithm to segment synthetic aperture radar (SAR) images, corrupted by speckle noise. Most standard segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, i.e. without any preprocessing step. The algorithm includes a statistical region growing procedure combined with hierarchical region merging. The region growing step oversegments the input radar image, thus enabling region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for performance improvement. We have tested and assessed the proposed technique on artificially speckled image and real SAR data. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1365 / 1378
页数:14
相关论文
共 39 条
[1]  
Airouche M, 2008, INT J COMPUT COMMUN, V3, P144
[2]  
Bai ZY, 2003, PROCEEDINGS OF 2003 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS & SIGNAL PROCESSING, PROCEEDINGS, VOLS 1 AND 2, P982
[3]   HIERARCHY IN PICTURE SEGMENTATION - A STEPWISE OPTIMIZATION APPROACH [J].
BEAULIEU, JM ;
GOLDBERG, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (02) :150-163
[4]  
BEAULIEU JM, 2004, UTILISATION SEGMENT
[5]   HIERARCHICAL IMAGE SEGMENTATION USING LOCAL AND ADAPTIVE SIMILARITY RULES [J].
BENIE, GB ;
THOMSON, KPB .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (08) :1559-1570
[6]   Hierarchical Feature-Based Classification Approach for Fast and User-Interactive SAR Image Interpretation [J].
Bernad, Gemma Pons ;
Denise, Leonard ;
Refregier, Philippe .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (01) :117-121
[7]  
COOK R., 1994, P SOC PHOTO-OPT INS, V2316, P92, DOI DOI 10.1117/12.197529
[8]   COMPARING THE PERFORMANCE OF SAR IMAGE SEGMENTATION ALGORITHMS [J].
DELVES, LM ;
WILKINSON, R ;
OLIVER, CJ ;
WHITE, RG .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (11) :2121-2149
[9]  
Fisz M., 1963, PROBABILITY THEORY M
[10]   An optimal multiedge detector for SAR image segmentation [J].
Fjortoft, R ;
Lopes, A ;
Marthon, P ;
Cubero-Castan, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (03) :793-802