Dirichlet problem with degeneration of the input data on the boundary of the domain

被引:3
作者
Rukavishnikov, V. A. [1 ]
Rukavishnikova, E. I. [1 ]
机构
[1] Russian Acad Sci, Far Eastern Branch, Ctr Comp, Khabarovsk, Russia
关键词
FINITE-ELEMENT-METHOD; SINGULARITY; EQUATIONS;
D O I
10.1134/S0012266116050141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an R-v-generalized solution of the first boundary value problem for a second-order elliptic equation with degeneration of the input data on the entire boundary of the two-dimensional domain and prove the existence and uniqueness of the solution in the weighted set (W)over dot(2,v) (vertical bar) (1)(beta/2) (Omega,delta).
引用
收藏
页码:681 / 685
页数:5
相关论文
共 11 条
[1]  
Aubin J.P.., 1972, APPROXIMATION ELLIPT
[2]  
LIZORKIN PI, 1981, DOKL AKAD NAUK SSSR+, V259, P28
[3]  
LIZORKIN PI, 1981, DOKL AKAD NAUK SSSR+, V257, P278
[4]  
Nikol'skii S.M., 1979, T MIAN, V150, P212
[5]   On the isomorphic mapping of weighted spaces by an elliptic operator with degeneration on the domain boundary [J].
Rukavishnikov, V. A. ;
Rukavishnikova, E. I. .
DIFFERENTIAL EQUATIONS, 2014, 50 (03) :345-351
[6]   Weighted finite element method for an elasticity problem with singularity [J].
Rukavishnikov, V. A. ;
Nikolaev, S. G. .
DOKLADY MATHEMATICS, 2013, 88 (03) :705-709
[7]   ON THE ERROR ESTIMATION OF THE FINITE ELEMENT METHOD FOR THE BOUNDARY VALUE PROBLEMS WITH SINGULARITY IN THE LEBESGUE WEIGHTED SPACE [J].
Rukavishnikov, V. A. ;
Rukavishnikova, H. I. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (12) :1328-1347
[8]   The finite element method for a boundary value problem with strong singularity [J].
Rukavishnikov, V. A. ;
Rukavishnikova, H. I. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) :2870-2882
[9]   On the coercivity of the Rv-generalized solution of the first boundary value problem with coordinated degeneration of the input data [J].
Rukavishnikov, VA ;
Ereklintsev, AG .
DIFFERENTIAL EQUATIONS, 2005, 41 (12) :1757-1767
[10]   New numerical method for solving time-harmonic Maxwell equations with strong singularity [J].
Rukavishnikov, Victor A. ;
Mosolapov, Andrey O. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) :2438-2448