Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery

被引:98
作者
Forrest, ML [1 ]
Gabrielson, N [1 ]
Pack, DW [1 ]
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
关键词
gene delivery; polyethylenimine; cyclodextrin; insulin;
D O I
10.1002/bit.20356
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Many human gene therapies will require cell-specific targeting. Though recombinant viruses are much more efficient than nonviral vectors, the latter, especially polymers, have the advantage of being targetable via conjugation of cell-specific ligands, including sugars, peptides, and antibodies, which can be covalently attached to the polymer using a variety of chemistries. Cyclodextrin, which forms inclusion complexes with small hydrophobic molecules, has been incorporated into a gene-delivery polymer and may provide a facile and versatile attachment site for targeting ligands. Polyethylenimine (PEI) was derivatized with beta-cyclodextrin on similar to 10% of the polymer's amines (termed CD-PEI). Human insulin was also derivatized with a hydrophobic palmitate group (pal-HI), which could anchor the protein to CD-PEI/DNA polyplexes. CD-PEI was essentially nontoxic to HEK293 cells at concentrations optimal for gene delivery and mediated nearly 4-fold higher gene expression than unmodified PEI, which is relatively toxic to these cells. More importantly, addition of the pal-HI to CD-PEI enhanced gene expression by more than an order of magnitude compared to unmodified PEI, either with or without the pal-HI. Because of the relative ease with which CD-binding moieties may be attached to various types of ligands, CD-PEI may be a generally useful material for testing novel cell-specific targeting compounds. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:416 / 423
页数:8
相关论文
共 46 条
[1]   Structural background of cyclodextrin-protein interactions [J].
Aachmann, FL ;
Otzen, DE ;
Larsen, KL ;
Wimmer, R .
PROTEIN ENGINEERING, 2003, 16 (12) :905-912
[2]   Enhancement of gene expression by polyamidoamine dendrimer conjugates with α-, β-, and γ-cyclodextrins [J].
Arima, H ;
Kihara, F ;
Hirayama, F ;
Uekama, K .
BIOCONJUGATE CHEMISTRY, 2001, 12 (04) :476-484
[3]   BETA-CYCLODEXTRIN - 52-WEEK TOXICITY STUDIES IN THE RAT AND DOG [J].
BELLRINGER, ME ;
SMITH, TG ;
READ, R ;
GOPINATH, C ;
OLIVIER, P .
FOOD AND CHEMICAL TOXICOLOGY, 1995, 33 (05) :367-376
[4]   Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine [J].
Benns, JM ;
Mahato, RI ;
Kim, SW .
JOURNAL OF CONTROLLED RELEASE, 2002, 79 (1-3) :255-269
[5]   Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes [J].
Bettinger, T ;
Remy, JS ;
Erbacher, P .
BIOCONJUGATE CHEMISTRY, 1999, 10 (04) :558-561
[6]   Effects of surface hydrophobicity on the structural properties of insulin [J].
Brader, ML ;
Millican, RL ;
Brems, DN ;
Havel, HA ;
Kriauciunas, A ;
Chen, VJ .
TECHNIQUES IN PROTEIN CHEMISTRY VIII, 1997, 8 :289-297
[7]   Characterization of a targeted gene carrier, lactose-polyethylene glycol-grafted poly-L-lysine, and its complex with plasmid DNA [J].
Choi, YH ;
Liu, F ;
Choi, JS ;
Kim, SW ;
Park, JS .
HUMAN GENE THERAPY, 1999, 10 (16) :2657-2665
[8]   Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier [J].
Choi, YH ;
Liu, F ;
Park, JS ;
Kim, SW .
BIOCONJUGATE CHEMISTRY, 1998, 9 (06) :708-718
[9]   TRANSFERRIN POLYCATION-MEDIATED INTRODUCTION OF DNA INTO HUMAN LEUKEMIC-CELLS - STIMULATION BY AGENTS THAT AFFECT THE SURVIVAL OF TRANSFECTED DNA OR MODULATE TRANSFERRIN RECEPTOR LEVELS [J].
COTTEN, M ;
LANGLEROUAULT, F ;
KIRLAPPOS, H ;
WAGNER, E ;
MECHTLER, K ;
ZENKE, M ;
BEUG, H ;
BIRNSTIEL, ML .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (11) :4033-4037
[10]  
Djedaini-Pilard F, 1999, PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON CYCLODEXTRINS, P73