Blind PARAFAC signal detection for polarization sensitive array

被引:33
作者
Zhang, Xiaofei [1 ]
Xu, Dazhuan [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Elect Engn, Nanjing 210016, Peoples R China
关键词
D O I
10.1155/2007/12025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper links the polarization-sensitive-array signal detection problem to the parallel factor (PARAFAC) model, which is an analysis tool rooted in psychometrics and chemometrics. Exploiting this link, it derives a deterministic PARAFAC signal detection algorithm. The proposed PARAFAC signal detection algorithm fully utilizes the polarization, spatial and temporal diversities, and supports small sample sizes. The PARAFAC algorithm does not require direction-of-arrival (DOA) information and polarization information, so it has blind and robust characteristics. The simulation results reveal that the performance of blind PARAFAC signal detection algorithm for polarization sensitive array is close to nonblind MMSE method, and this algorithm works well in array error condition.
引用
收藏
页数:7
相关论文
共 25 条
[1]  
[Anonymous], 1990, Journal ofChemometrics, DOI DOI 10.1002/CEM.1180040105
[2]  
[Anonymous], 2004, MULTIWAY ANAL APPL C
[3]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[4]   Computation of the canonical decomposition by means of a simultaneous generalized Schur decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) :295-327
[5]   A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization [J].
De Lathauwer, Lieven .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (03) :642-666
[6]  
Gesbert D, 1998, INT CONF ACOUST SPEE, P3161, DOI 10.1109/ICASSP.1998.679535
[7]  
Harshman R. A., 1970, UCLA Work. Papers Phonetics, DOI DOI 10.1134/S0036023613040165
[8]  
KAPTSIS I, 1994, P 3 ANN INT C UN PER, P230
[9]   3-WAY ARRAYS - RANK AND UNIQUENESS OF TRILINEAR DECOMPOSITIONS, WITH APPLICATION TO ARITHMETIC COMPLEXITY AND STATISTICS [J].
KRUSKAL, JB .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 18 (02) :95-138
[10]   A DECOMPOSITION FOR 3-WAY ARRAYS [J].
LEURGANS, SE ;
ROSS, RT ;
ABEL, RB .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) :1064-1083