Random site percolation in three dimensions

被引:59
作者
Jan, N
Stauffer, D
机构
[1] St Francis Xavier Univ, Dept Phys, Antigonish, NS B2G 2W5, Canada
[2] Univ Cologne, Inst Theoret Phys, D-50923 Cologne, Germany
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 1998年 / 9卷 / 02期
关键词
random site; percolation; critical exponents; Monte Carlo Simulations; three dimensions; rank;
D O I
10.1142/S0129183198000261
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We simulate sytems up to 10 001 x 10 001 x 10 001 in three dimensions at the percolation threshold p(c) of 0.31160. We find that the fractal dimension is similar or equal to 2.53 +/- 0.02, the cluster size distribution exponent, tau, is 2.186 +/- 0.002 and an exponent of 0.85 describing how the mass of the clusters scale with rank. Corrections-to-scaling exponents of similar or equal to -0.7 are observed for n(s) and for the mass of the largest cluster. We also check the percolation threshold and report good agreement with recent values.
引用
收藏
页码:341 / 347
页数:7
相关论文
共 11 条
[1]  
BINDER K, 1984, APPLICATIONS MONTE C, P241
[2]  
Bunde A., 1996, FRACTALS DISORDERED, DOI DOI 10.1007/978-3-642-84868-1
[3]   NUMERICAL-STUDIES OF CRITICAL PERCOLATION IN 3-DIMENSIONS [J].
GRASSBERGER, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (22) :5867-5888
[4]  
JAN N, PREPRINT
[5]  
Kopelman R, 1976, PHYS REV B, V14, P3428
[6]   Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices [J].
Lorenz, CD ;
Ziff, RM .
PHYSICAL REVIEW E, 1998, 57 (01) :230-236
[7]   Large lattice simulation of random site percolation [J].
Macleod, S ;
Jan, N .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (02) :289-294
[8]   SIZE OF LARGEST AND 2ND LARGEST CLUSTER IN RANDOM PERCOLATION [J].
MARGOLINA, A ;
HERRMANN, HJ ;
STAUFFER, D .
PHYSICS LETTERS A, 1982, 93 (02) :73-75
[9]  
RUIZLORENZO JJ, COMMUNICATION
[10]  
SAHIMI M, 1994, APPL PERCOLATION THE