Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer

被引:84
作者
Kirienko, Margarita [1 ,2 ]
Sollini, Martina [1 ,3 ]
Corbetta, Marinella [1 ]
Voulaz, Emanuele [1 ,3 ]
Gozzi, Noemi [3 ]
Interlenghi, Matteo [4 ,5 ]
Gallivanone, Francesca [4 ]
Castiglioni, Isabella [4 ,6 ]
Asselta, Rosanna [1 ,3 ]
Duga, Stefano [1 ]
Solda, Giulia [1 ,3 ,4 ]
Chiti, Arturo [1 ,3 ]
机构
[1] Humanitas Univ, Dept Biomed Sci, Via Rita Levi Montalcini 4, I-20090 Milan, Italy
[2] Fdn IRCCS Ist Nazl Tumori, Via G Venezian 1, I-20133 Milan, Italy
[3] IRCCS Humanitas Res Hosp, Via Manzoni 56, I-20089 Milan, Italy
[4] CNR, Natl Res Council, IBFM, Inst Mol Bioimaging & Physiol, Milan, Italy
[5] DeepTrace Technol Srl, Via Conservatorio 17, I-20122 Milan, Italy
[6] Univ Milano Bicocca, Dept Phys G Occhialini, Piazza Sci 3, I-20126 Milan, Italy
关键词
Artificial intelligence; Image analysis; Lung cancer; Radiogenomics; PET; CT; Mutation; Gene expression; WNT PATHWAY; POOR-PROGNOSIS; CELL CARCINOMA; RECEPTOR; TARGET; BREAST; PHENOTYPE; DIAGNOSIS; PET;
D O I
10.1007/s00259-021-05371-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective The objectives of our study were to assess the association of radiomic and genomic data with histology and patient outcome in non-small cell lung cancer (NSCLC). Methods In this retrospective single-centre observational study, we selected 151 surgically treated patients with adenocarcinoma or squamous cell carcinoma who performed baseline [18F] FDG PET/CT. A subgroup of patients with cancer tissue samples at the Institutional Biobank (n = 74/151) was included in the genomic analysis. Features were extracted from both PET and CT images using an in-house tool. The genomic analysis included detection of genetic variants, fusion transcripts, and gene expression. Generalised linear model (GLM) and machine learning (ML) algorithms were used to predict histology and tumour recurrence. Results Standardised uptake value (SUV) and kurtosis (among the PET and CT radiomic features, respectively), and the expression of TP63, EPHA10, FBN2, and IL1RAP were associated with the histotype. No correlation was found between radiomic features/genomic data and relapse using GLM. The ML approach identified several radiomic/genomic rules to predict the histotype successfully. The ML approach showed a modest ability of PET radiomic features to predict relapse, while it identified a robust gene expression signature able to predict patient relapse correctly. The best-performing ML radiogenomic rule predicting the outcome resulted in an area under the curve (AUC) of 0.87. Conclusions Radiogenomic data may provide clinically relevant information in NSCLC patients regarding the histotype, aggressiveness, and progression. Gene expression analysis showed potential new biomarkers and targets valuable for patient management and treatment. The application of ML allows to increase the efficacy of radiogenomic analysis and provides novel insights into cancer biology.
引用
收藏
页码:3643 / 3655
页数:13
相关论文
共 57 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   IL-12 Can Target Human Lung Adenocarcinoma Cells and Normal Bronchial Epithelial Cells Surrounding Tumor Lesions [J].
Airoldi, Irma ;
Di Carlo, Emma ;
Cocco, Claudia ;
Caci, Emanuela ;
Cilli, Michele ;
Sorrentino, Carlo ;
Sozzi, Gabriella ;
Ferrini, Silvano ;
Rosini, Sandra ;
Bertolini, Giulia ;
Truini, Mauro ;
Grossi, Francesco ;
Galietta, Luis Juan Vicente ;
Ribatti, Domenico ;
Pistoia, Vito .
PLOS ONE, 2009, 4 (07)
[3]   EPHA mutation as a predictor of immunotherapeutic efficacy in lung adenocarcinoma [J].
Bai, Hua ;
Duan, Jianchun ;
Li, Chengcheng ;
Xie, Wenzhuan ;
Fang, Wenfeng ;
Xu, Yu ;
Wang, Guoqiang ;
Wan, Rui ;
Sun, Jing ;
Xu, Jiachen ;
Wang, Xin ;
Fei, Kailun ;
Zhao, Zhengyi ;
Cai, Shangli ;
Zhang, Li ;
Wang, Jie ;
Wang, Zhijie .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (02)
[4]   The emerging clinical relevance of genomics in cancer medicine [J].
Berger, Michael F. ;
Mardis, Elaine R. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2018, 15 (06) :353-365
[5]   Radiogenomics: bridging imaging and genomics [J].
Bodalal, Zuhir ;
Trebeschi, Stefano ;
Nguyen-Kim, Thi Dan Linh ;
Schats, Winnie ;
Beets-Tan, Regina .
ABDOMINAL RADIOLOGY, 2019, 44 (06) :1960-1984
[6]   FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 [J].
Boellaard, Ronald ;
Delgado-Bolton, Roberto ;
Oyen, Wim J. G. ;
Giammarile, Francesco ;
Tatsch, Klaus ;
Eschner, Wolfgang ;
Verzijlbergen, Fred J. ;
Barrington, Sally F. ;
Pike, Lucy C. ;
Weber, Wolfgang A. ;
Stroobants, Sigrid ;
Delbeke, Dominique ;
Donohoe, Kevin J. ;
Holbrook, Scott ;
Graham, Michael M. ;
Testanera, Giorgio ;
Hoekstra, Otto S. ;
Zijlstra, Josee ;
Visser, Eric ;
Hoekstra, Corneline J. ;
Pruim, Jan ;
Willemsen, Antoon ;
Arends, Bertjan ;
Kotzerke, Joerg ;
Bockisch, Andreas ;
Beyer, Thomas ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) :328-354
[7]   FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0 [J].
Boellaard, Ronald ;
O'Doherty, Mike J. ;
Weber, Wolfgang A. ;
Mottaghy, Felix M. ;
Lonsdale, Markus N. ;
Stroobants, Sigrid G. ;
Oyen, Wim J. G. ;
Kotzerke, Joerg ;
Hoekstra, Otto S. ;
Pruim, Jan ;
Marsden, Paul K. ;
Tatsch, Klaus ;
Hoekstra, Corneline J. ;
Visser, Eric P. ;
Arends, Bertjan ;
Verzijlbergen, Fred J. ;
Zijlstra, Josee M. ;
Comans, Emile F. I. ;
Lammertsma, Adriaan A. ;
Paans, Anne M. ;
Willemsen, Antoon T. ;
Beyer, Thomas ;
Bockisch, Andreas ;
Schaefer-Prokop, Cornelia ;
Delbeke, Dominique ;
Baum, Richard P. ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 (01) :181-200
[8]   The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation [J].
Carvalhal, Sara ;
Ribeiro, Susana Abreu ;
Arocena, Miguel ;
Kasciukovic, Taciana ;
Temme, Achim ;
Koehler, Katrin ;
Huebner, Angela ;
Griffis, Eric R. .
MOLECULAR BIOLOGY OF THE CELL, 2015, 26 (19) :3424-3438
[9]   Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line [J].
Davis, Felicity M. ;
Parsonage, Michelle T. ;
Cabot, Peter J. ;
Parat, Marie-Odile ;
Thompson, Erik W. ;
Roberts-Thomson, Sarah J. ;
Monteith, Gregory R. .
CANCER CELL INTERNATIONAL, 2013, 13
[10]   Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017 A Systematic Analysis for the Global Burden of Disease Study [J].
Fitzmaurice, Christina ;
Abate, Degu ;
Abbasi, Naghmeh ;
Abbastabar, Hedayat ;
Abd-Allah, Foad ;
Abdel-Rahman, Omar ;
Abdelalim, Ahmed ;
Abdoli, Amir ;
Abdollahpour, Ibrahim ;
Abdulle, Abdishakur S. M. ;
Abebe, Nebiyu Dereje ;
Abraha, Haftom Niguse ;
Abu-Raddad, Laith Jamal ;
Abualhasan, Ahmed ;
Adedeji, Isaac Akinkunmi ;
Advani, Shailesh M. ;
Afarideh, Mohsen ;
Afshari, Mandi ;
Aghaali, Mohammad ;
Agius, Dominic ;
Agrawal, Sutapa ;
Ahmadi, Ayat ;
Ahmadian, Elham ;
Ahmadpour, Ehsan ;
Ahmed, Muktar Beshir ;
Akbari, Mohammad Esmaeil ;
Akinyemiju, Tomi ;
Al-Aly, Ziyad ;
AlAbdulKader, Assim M. ;
Alandab, Fares ;
Alam, Tahiya ;
Alamene, Genet Melak ;
Alemnew, Birhan Tamene T. ;
Alene, Kefyalew Addis ;
Alinia, Cyrus ;
Alipour, Vahid ;
Aljunid, Syed Mohamed ;
Bakeshei, Fatemeh Allah ;
Abdulrahman, Majid ;
Almadi, Hamad ;
Almasi-Hashiani, Amir ;
Alsharif, Ubai ;
Alsowaidi, Shirina ;
Alvis-Guzman, Nelson ;
Amini, Erfan ;
Amini, Saeed ;
Amoako, Yaw Ampem ;
Anbari, Zohreh ;
Anber, Nahla Hamed ;
Andrei, Catalina Liliana .
JAMA ONCOLOGY, 2019, 5 (12) :1749-1768