Some extensions of the Marcinkiewicz interpolation theorem in terms of modular inequalities

被引:0
作者
Carro, MJ [1 ]
Nikolova, L
机构
[1] Univ Barcelona, Fac Matemat, Dept Matemat Aplicada & Anal, E-08071 Barcelona, Spain
[2] Univ Sofia, Dept Math, BU-1126 Sofia, Bulgaria
关键词
boundedness of operators; interpolation; modular inequalities;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a quasi-subaditive operator T : L-0(mu) --> L-0(nu), we want to study mapping properties of interpolation type for which the following modular inequality holds integral(N) P(\Tf(x)\)dv(x) less than or equal to integral(M) Q(\f(x)\)dmu(x) where P and Q are modular functions. These results generalize the classical Marcinkiewicz interpolation theorem.
引用
收藏
页码:385 / 394
页数:10
相关论文
共 8 条
  • [1] ORLICZ SPACES AND REARRANGED MAXIMAL FUNCTIONS
    BAGBY, RJ
    PARSONS, JD
    [J]. MATHEMATISCHE NACHRICHTEN, 1987, 132 : 15 - 27
  • [2] Bennett C., 1988, INTERPOLATION OPERAT
  • [3] Bergh J., 1976, INTERPOLATION SPACES
  • [4] Modular inequalities for the Calderon operator
    Carro, MJ
    Heinig, H
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2000, 52 (01) : 31 - 46
  • [5] Kokilashvili Vakhtang, 1991, Weighted Inequalities In Lorentz And Orlicz Spaces
  • [6] Krasnoselskii M.A., 1961, Convex Functions and Orlicz Spaces, pxi+249
  • [7] LAI QS, 1994, J LOND MATH SOC, V49, P224
  • [8] Yano S., 1951, J. Math. Soc. Japan, V3, P296, DOI 10.2969/jmsj/00320296