The L(2,1)-labeling problem on graphs

被引:309
|
作者
Chang, GJ
Kuo, D
机构
[1] Department of Applied Mathematics, National Chiao Tung University
关键词
L(2,1)-labeling; T-coloring; union; join; chordal graph; perfect graph; tree; bipartite matching; algorithm;
D O I
10.1137/S0895480193245339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that \f(x) - f(y)\ greater than or equal to 2 if d(x, y) = 1 and \f(x) - f(y)\ greater than or equal to 1 if d(x, y) = 2. The L(2, 1)-labeling number lambda(G) of G is the smallest number Ic such that G has an L(2, 1)-labeling with max{f(v) : v is an element of V(G)} = k. In this paper, we give exact formulas of lambda(G boolean OR H) and lambda(G + H). We also prove that lambda(G) less than or equal to Delta(2) + Delta for any graph G of maximum degree Delta. For odd-sun-free (OSF)-chordal graphs, the upper bound can be reduced to lambda(G) less than or equal to 2 Delta + 1. For sun-free (SF)-chordal graphs, the upper bound can be reduced to lambda(G) less than or equal to Delta + 2 chi(G) - 2. Finally, we present a polynomial time algorithm to determine lambda(T) for a tree T.
引用
收藏
页码:309 / 316
页数:8
相关论文
共 50 条
  • [1] THE L(2,1)-F-LABELING PROBLEM OF GRAPHS
    Chang, Gerard J.
    Lu, Changhong
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1277 - 1285
  • [2] Exact Algorithms for L(2,1)-Labeling of Graphs
    Frédéric Havet
    Martin Klazar
    Jan Kratochvíl
    Dieter Kratsch
    Mathieu Liedloff
    Algorithmica, 2011, 59 : 169 - 194
  • [3] Exact Algorithms for L(2,1)-Labeling of Graphs
    Havet, Frederic
    Klazar, Martin
    Kratochvil, Jan
    Kratsch, Dieter
    Liedloff, Mathieu
    ALGORITHMICA, 2011, 59 (02) : 169 - 194
  • [4] Path covering number and L(2,1)-labeling number of graphs
    Lu, Changhong
    Zhou, Qing
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2062 - 2074
  • [5] The L(2,1)-labeling Problem via the Semi-tensor Product Method
    Xu, Meirong
    Sun, Liying
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 823 - 828
  • [6] L(3,2,1)-LABELING OF GRAPHS
    Chia, Ma-Lian
    Kuo, David
    Liao, Hong-ya
    Yang, Cian-Hui
    Yeh, Roger K.
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2439 - 2457
  • [7] L(2,1)-Labeling of the Strong Product of Paths and Cycles
    Shao, Zehui
    Vesel, Aleksander
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [8] The L(3,2,1)-labeling on Bipartite Graphs
    Yuan Wan-lian1
    CommunicationsinMathematicalResearch, 2009, 25 (01) : 79 - 87
  • [9] On a labeling problem in graphs
    Chandrasekaran, R.
    Dawande, M.
    Baysan, M.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (08) : 746 - 759
  • [10] CHARACTERIZATION RESULTS FOR THE L(2,1,1)-LABELING PROBLEM ON TREES
    Zhang, Xiaoling
    Deng, Kecai
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 611 - 622