A MATRIX MODEL FOR HYPERGEOMETRIC HURWITZ NUMBERS

被引:27
作者
Ambjorn, J. [1 ,2 ]
Chekhov, L. O. [3 ,4 ,5 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[2] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands
[3] RAS, VA Steklov Math Inst, Moscow 117901, Russia
[4] Independent Univ Moscow, Lab Poncelet, Moscow, Russia
[5] Aarhus Univ, Ctr Quantum Geometry Moduli Spaces, Aarhus, Denmark
基金
俄罗斯基础研究基金会; 欧洲研究理事会;
关键词
Hurwitz number; random complex matrix; Kadomtsev-Petviashvili hierarchy; matrix chain; bipartite graph; spectral curve; GEOMETRY;
D O I
10.1007/s11232-014-0229-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present multimatrix models that are generating functions for the numbers of branched covers of the complex projective line ramified over n fixed points z(i), i = 1, ..., n (generalized Grothendieck's dessins d'enfants) of fixed genus, degree, and ramification profiles at two points z(1) and z(n). We sum over all possible ramifications at the other n-2 points with a fixed length of the profile at z (2) and with a fixed total length of profiles at the remaining n-3 points. All these models belong to a class of hypergeometric Hurwitz models and are therefore tau functions of the Kadomtsev-Petviashvili hierarchy. In this case, we can represent the obtained model as a chain of matrices with a (nonstandard) nearest-neighbor interaction of the type tr MiMi+1-1 . We describe the technique for evaluating spectral curves of such models, which opens the way for obtaining 1/N (2) -expansions of these models using the topological recursion method. These spectral curves turn out to be algebraic.
引用
收藏
页码:1486 / 1498
页数:13
相关论文
共 35 条
[1]   Partition functions of matrix models: First special functions of string theory [J].
Alexandrov, A ;
Morozov, A ;
Mironov, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (24) :4127-4163
[2]   Integrability of Hurwitz partition functions [J].
Alexandrov, A. ;
Mironov, A. ;
Morozov, A. ;
Natanzon, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (04)
[3]   HIGHER GENUS CORRELATORS FOR THE COMPLEX MATRIX MODEL [J].
AMBJORN, J ;
KRISTJANSEN, CF ;
MAKEENKO, YM .
MODERN PHYSICS LETTERS A, 1992, 7 (34) :3187-3202
[4]   The matrix model for dessins d'enfants [J].
Ambjorn, Jan ;
Chekhov, Leonid .
ANNALES DE L INSTITUT HENRI POINCARE D, 2014, 1 (03) :337-361
[5]   ON GALOIS EXTENSIONS OF A MAXIMAL CYCLOTOMIC FIELD [J].
BELYI, GV .
MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 14 (02) :247-256
[6]   A matrix model for simple Hurwitz numbers, and topological recursion [J].
Borot, Gaetan ;
Eynard, Bertrand ;
Mulase, Motohico ;
Safnuk, Brad .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) :522-540
[7]  
Bouchard V, 2008, P SYMP PURE MATH, V78, P263
[8]   Matrix models with hard walls: geometry and solutions [J].
Chekhov, L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (28) :8857-8893
[9]   THE MULTICRITICAL KONTSEVICH-PENNER MODEL [J].
CHEKHOV, L ;
MAKEENKO, Y .
MODERN PHYSICS LETTERS A, 1992, 7 (14) :1223-1236
[10]   Matrix model tools and geometry of moduli spaces [J].
Chekhov, L .
ACTA APPLICANDAE MATHEMATICAE, 1997, 48 (01) :33-90