A note on POD model reduction methods for DAEs

被引:7
作者
Ebert, Falk [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
differential-algebraic equations; POD; model reduction; NUMERICAL-SOLUTION; INDEX;
D O I
10.1080/13873951003740041
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We review some known results for proper orthogonal decomposition (POD) model order reduction applied to ordinary differential equations (ODEs). Then, these results are generalized for several types of differential-algebraic equations (DAEs). We provide algorithms for the model reduction and error bounds for the reduced-order models. Some limits of the approach are pointed out and alternative methods for reduced-order subspace approximation are presented. The POD approach is tested and evaluated for a medium-sized DAE example from multi-body dynamics.
引用
收藏
页码:115 / 131
页数:17
相关论文
共 40 条
[1]  
ANDERSON E., 1999, LAPACK USERSGUIDE, V3rd
[2]  
[Anonymous], 1980, STAT METHODS
[3]  
ANTOULAS A. C., 2005, ADV DES CONTROL, DOI 10.1137/1.9780898718713
[4]  
Arnol'd V.I., 1971, ORDINARY DIFFERENTIA
[5]  
Bächle S, 2007, MATH INDUST, V11, P191
[6]  
BRENAN KE, 1996, DIFFERENTIAL ALGEBRA
[7]   LINEARIZATION OF DAES ALONG TRAJECTORIES [J].
CAMPBELL, SL .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 (01) :70-84
[8]   THE INDEX OF GENERAL NONLINEAR DAES [J].
CAMPBELL, SL ;
GEAR, CW .
NUMERISCHE MATHEMATIK, 1995, 72 (02) :173-196
[9]   SOLVABILITY OF GENERAL DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
CAMPBELL, SL ;
GRIEPENTROG, E .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (02) :257-270
[10]  
DAHLQUIST G, 1959, T ROYAL I TECHN STOC, V130