A type-2 fuzzy logic controller for the liquid-level process

被引:0
作者
Wu, DR [1 ]
Tan, WW [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
来源
2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS | 2004年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on evolving type-2 fuzzy logic controllers (FLCs) genetically and examining whether they are better able to handle modelling uncertainties. The study is conducted by utilizing a type-2 FLC, evolved by a genetic algorithm (GA), to control a liquid-level process. A two stage strategy is employed to design the type-2 FLC. First, the parameters of a type-1 FLC are optimized using GA. Next, the footprint of uncertainty is evolved by blurring the fuzzy input set. Experimental results show that the type-2 FLC copes well with the complexity of the plant, and can handle the modelling uncertainty better than its type-1 counterpart.
引用
收藏
页码:953 / 958
页数:6
相关论文
共 12 条
[1]  
[Anonymous], GENETIC ALGORITHMS C
[2]  
[Anonymous], FUZZY LOGIC INTELLIG
[3]  
[Anonymous], 2001, Advances in Fuzzy Systems-Applications and Theory
[4]   SIMULTANEOUS DESIGN OF MEMBERSHIP FUNCTIONS AND RULE SETS FOR FUZZY CONTROLLERS USING GENETIC ALGORITHMS [J].
HOMAIFAR, A ;
MCCORMICK, E .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (02) :129-139
[5]   DESIGNING FUZZY NET CONTROLLERS USING GENETIC ALGORITHMS [J].
KIM, JW ;
MOON, YK ;
ZEIGLER, BP .
IEEE CONTROL SYSTEMS MAGAZINE, 1995, 15 (03) :66-72
[6]  
KING P, 1997, AUTOMATICA, V13, P235
[7]  
Mendel J.M., 2001, RULE BASED FUZZY LOG
[8]  
MICHALEWICZ Z, 1996, GENETIC ALGORITHMS D
[9]  
Sakawa M., 2002, GENETIC ALGORITHMS F
[10]  
TEO L, 1998, INT J ENG APPL ARTIF, V11, P517