A type-2 fuzzy logic controller for the liquid-level process

被引:0
作者
Wu, DR [1 ]
Tan, WW [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
来源
2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS | 2004年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on evolving type-2 fuzzy logic controllers (FLCs) genetically and examining whether they are better able to handle modelling uncertainties. The study is conducted by utilizing a type-2 FLC, evolved by a genetic algorithm (GA), to control a liquid-level process. A two stage strategy is employed to design the type-2 FLC. First, the parameters of a type-1 FLC are optimized using GA. Next, the footprint of uncertainty is evolved by blurring the fuzzy input set. Experimental results show that the type-2 FLC copes well with the complexity of the plant, and can handle the modelling uncertainty better than its type-1 counterpart.
引用
收藏
页码:953 / 958
页数:6
相关论文
共 12 条
  • [1] [Anonymous], GENETIC ALGORITHMS C
  • [2] [Anonymous], FUZZY LOGIC INTELLIG
  • [3] [Anonymous], 2001, Advances in Fuzzy Systems-Applications and Theory
  • [4] SIMULTANEOUS DESIGN OF MEMBERSHIP FUNCTIONS AND RULE SETS FOR FUZZY CONTROLLERS USING GENETIC ALGORITHMS
    HOMAIFAR, A
    MCCORMICK, E
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (02) : 129 - 139
  • [5] DESIGNING FUZZY NET CONTROLLERS USING GENETIC ALGORITHMS
    KIM, JW
    MOON, YK
    ZEIGLER, BP
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 1995, 15 (03): : 66 - 72
  • [6] KING P, 1997, AUTOMATICA, V13, P235
  • [7] Mendel J.M., 2001, RULE BASED FUZZY LOG
  • [8] MICHALEWICZ Z, 1996, GENETIC ALGORITHMS D
  • [9] Sakawa M., 2002, GENETIC ALGORITHMS F
  • [10] TEO L, 1998, INT J ENG APPL ARTIF, V11, P517