DIMENSION DISTORTION OF IMAGES OF SETS UNDER SOBOLEV MAPPINGS

被引:6
作者
Hencl, Stanislav [1 ]
Honzik, Petr [1 ]
机构
[1] Charles Univ Prague, Dept Math Anal, Prague 18600 8, Czech Republic
关键词
Sobolev mapping; Hausdorff dimension; QUASI-CONFORMAL MAPPINGS; FREQUENCY; SUBSPACES; SPACES;
D O I
10.5186/aasfm.2015.4026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f: R-n -> R-k be a continuous representative of a mapping in a Sobolev space W-1,W-P, p > n. Suppose that the Hausdorff dimension of a set M is at most alpha. Kaufmann [12] proved an optimal bound beta = p alpha/p-n+alpha for the dimension of the image of M under the mapping f. We show that this bound remains essentially valid even for 1 < p <= n and we also prove analogous bound for mappings in Sobolev spaces with higher order or even fractional smoothness.
引用
收藏
页码:427 / 442
页数:16
相关论文
共 16 条
[1]  
Adams DR, 1996, FUNCTION SPACES POTE
[2]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[3]  
Balogh Z.M., 2013, PREPRINT
[4]   Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces [J].
Balogh, Zoltan M. ;
Tyson, Jeremy T. ;
Wildrick, Kevin .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2013, 1 :232-254
[5]   Grassmannian Frequency of Sobolev Dimension Distortion [J].
Balogh, Zoltan M. ;
Mattila, Pertti ;
Tyson, Jeremy T. .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (2-3) :505-523
[6]   Frequency of Sobolev and quasiconformal dimension distortion [J].
Balogh, Zoltan M. ;
Monti, Roberto ;
Tyson, Jeremy T. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (02) :125-149
[7]  
GEHRING FW, 1973, J LOND MATH SOC, V6, P504
[8]   LP-INTEGRABILITY OF PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING [J].
GEHRING, FW .
ACTA MATHEMATICA, 1973, 130 (3-4) :265-277
[9]  
Grafakos L, 2008, GRAD TEXTS MATH, V249, P1, DOI 10.1007/978-0-387-09432-8_1
[10]   Dimension of images of subspaces under mappings in Triebel-Lizorkin spaces [J].
Hencl, Stanislav ;
Honzik, Petr .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (07) :748-763