共 44 条
Immunoneutralization of chemokines for the prevention and treatment of central nervous system autoimmune disease
被引:27
作者:
Karpus, WJ
[1
]
Fife, BT
[1
]
Kennedy, KJ
[1
]
机构:
[1] Northwestern Univ, Feinberg Sch Med, Dept Pathol, Chicago, IL 60611 USA
来源:
基金:
美国国家卫生研究院;
关键词:
chemokines;
autoimmune encephalomyelitis;
multiple sclerosis;
EAE;
central nervous system;
D O I:
10.1016/S1046-2023(02)00360-2
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Chemokine-induced lymphocyte migration has long been hypothesized to regulate the appearance and continued presence of lymphocytes and monocytes in tissue-specific autoimmune diseases, including central nervous system autoimmune diseases such as multiple sclerosis. For instance, a large body of evidence points to the temporal association of chemokine expression with the appearance of T lymphocytes and monocytes/macrophages. Furthermore, experiments using mice with targeted mutations for chemokines have shown the importance of those molecules in the development of central nervous system autoimmune disease. We have hypothesized that temporal and spatial expression of chemokines is a key factor in the pathogenesis of experimental autoimmune encephalomyelitis and multiple sclerosis. To test our hypothesis we have employed the strategy of eliminating chemokine function by the passive transfer of chemokine-specific polyclonal antibodies. This approach has allowed us not only to test the function of chemokines in experimental autoimmune encephalomyelitis development, but also to ask questions about the roles of chemokines during disease progression. Moreover, this approach has allowed us to assess the efficacy of targeting chemokines and their receptors for treatment of ongoing disease. In the present report we summarize our experience using anti-chemokine administration for the prevention and treatment of experimental autoimmune encephalomyelitis as well as provide specific examples of how this approach is efficacious for disease treatment. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:362 / 368
页数:7
相关论文