Multi-omics data integration considerations and study design for biological systems and disease

被引:94
|
作者
Graw, Stefan [1 ]
Chappell, Kevin [1 ]
Washam, Charity L. [1 ,2 ]
Gies, Allen [1 ]
Bird, Jordan [1 ]
Robeson, Michael S., II [3 ]
Byrum, Stephanie D. [1 ,2 ]
机构
[1] Univ Arkansas Med Sci, Dept Biochem & Mol Biol, 4301 West Markham St,Slot 516, Little Rock, AR 72205 USA
[2] Arkansas Childrens Res Inst, 13 Childrens Way, Little Rock, AR 72202 USA
[3] Univ Arkansas Med Sci, Dept Biomed Informat, Little Rock, AR 72205 USA
基金
美国国家卫生研究院;
关键词
WEB-BASED TOOL; GUT MICROBIOTA; SAMPLE-SIZE; RESOURCE; METABOLOMICS; IMPACT; TRANSCRIPTOMICS; GREENGENES; DISCOVERY; INTERPLAY;
D O I
10.1039/d0mo00041h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the advancement of next-generation sequencing and mass spectrometry, there is a growing need for the ability to merge biological features in order to study a system as a whole. Features such as the transcriptome, methylome, proteome, histone post-translational modifications and the microbiome all influence the host response to various diseases and cancers. Each of these platforms have technological limitations due to sample preparation steps, amount of material needed for sequencing, and sequencing depth requirements. These features provide a snapshot of one level of regulation in a system. The obvious next step is to integrate this information and learn how genes, proteins, and/or epigenetic factors influence the phenotype of a disease in context of the system. In recent years, there has been a push for the development of data integration methods. Each method specifically integrates a subset of omics data using approaches such as conceptual integration, statistical integration, model-based integration, networks, and pathway data integration. In this review, we discuss considerations of the study design for each data feature, the limitations in gene and protein abundance and their rate of expression, the current data integration methods, and microbiome influences on gene and protein expression. The considerations discussed in this review should be regarded when developing new algorithms for integrating multi-omics data.
引用
收藏
页码:170 / 185
页数:16
相关论文
共 50 条
  • [21] Optimizing network propagation for multi-omics data integration
    Charmpi, Konstantina
    Chokkalingam, Manopriya
    Johnen, Ronja
    Beyer, Andreas
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (11)
  • [22] ‘Multi-omics’ data integration: applications in probiotics studies
    Iliya Dauda Kwoji
    Olayinka Ayobami Aiyegoro
    Moses Okpeku
    Matthew Adekunle Adeleke
    npj Science of Food, 7
  • [23] Methods for the integration of multi-omics data: mathematical aspects
    Bersanelli, Matteo
    Mosca, Ettore
    Remondini, Daniel
    Giampieri, Enrico
    Sala, Claudia
    Castellani, Gastone
    Milanesi, Luciano
    BMC BIOINFORMATICS, 2016, 17
  • [24] Systems biology tools for integrated omics analysis: Understanding disease mechanisms through multi-omics data integration pathway analysis
    Hughes, Mark
    Genetic Engineering and Biotechnology News, 2015, 35 (03): : 18 - 19
  • [25] The human microbiome and genetic disease: towards the integration of metagenomic and multi-omics data
    Zhao, Huiying
    HUMAN GENETICS, 2021, 140 (05) : 701 - 702
  • [26] Prospects and challenges of multi-omics data integration in toxicology
    Canzler, Sebastian
    Schor, Jana
    Busch, Wibke
    Schubert, Kristin
    Rolle-Kampczyk, Ulrike E.
    Seitz, Herve
    Kamp, Hennicke
    von Bergen, Martin
    Buesen, Roland
    Hackermueller, Joerg
    ARCHIVES OF TOXICOLOGY, 2020, 94 (02) : 371 - 388
  • [27] Vertical and horizontal integration of multi-omics data with miodin
    Ulfenborg, Benjamin
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [28] 'Multi-omics' data integration: applications in probiotics studies
    Kwoji, Iliya Dauda
    Aiyegoro, Olayinka Ayobami
    Okpeku, Moses
    Adeleke, Matthew Adekunle
    NPJ SCIENCE OF FOOD, 2023, 7 (01)
  • [29] Review on Integration Analysis and Application of Multi-omics Data
    Zhong, Yating
    Lin, Yanmei
    Chen, Dingjia
    Peng, Yuzhong
    Zeng, Yuanpeng
    Computer Engineering and Applications, 2024, 57 (23) : 1 - 17
  • [30] Vertical and horizontal integration of multi-omics data with miodin
    Benjamin Ulfenborg
    BMC Bioinformatics, 20