Multi-omics data integration considerations and study design for biological systems and disease

被引:108
作者
Graw, Stefan [1 ]
Chappell, Kevin [1 ]
Washam, Charity L. [1 ,2 ]
Gies, Allen [1 ]
Bird, Jordan [1 ]
Robeson, Michael S., II [3 ]
Byrum, Stephanie D. [1 ,2 ]
机构
[1] Univ Arkansas Med Sci, Dept Biochem & Mol Biol, 4301 West Markham St,Slot 516, Little Rock, AR 72205 USA
[2] Arkansas Childrens Res Inst, 13 Childrens Way, Little Rock, AR 72202 USA
[3] Univ Arkansas Med Sci, Dept Biomed Informat, Little Rock, AR 72205 USA
基金
美国国家卫生研究院;
关键词
WEB-BASED TOOL; GUT MICROBIOTA; SAMPLE-SIZE; RESOURCE; METABOLOMICS; IMPACT; TRANSCRIPTOMICS; GREENGENES; DISCOVERY; INTERPLAY;
D O I
10.1039/d0mo00041h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the advancement of next-generation sequencing and mass spectrometry, there is a growing need for the ability to merge biological features in order to study a system as a whole. Features such as the transcriptome, methylome, proteome, histone post-translational modifications and the microbiome all influence the host response to various diseases and cancers. Each of these platforms have technological limitations due to sample preparation steps, amount of material needed for sequencing, and sequencing depth requirements. These features provide a snapshot of one level of regulation in a system. The obvious next step is to integrate this information and learn how genes, proteins, and/or epigenetic factors influence the phenotype of a disease in context of the system. In recent years, there has been a push for the development of data integration methods. Each method specifically integrates a subset of omics data using approaches such as conceptual integration, statistical integration, model-based integration, networks, and pathway data integration. In this review, we discuss considerations of the study design for each data feature, the limitations in gene and protein abundance and their rate of expression, the current data integration methods, and microbiome influences on gene and protein expression. The considerations discussed in this review should be regarded when developing new algorithms for integrating multi-omics data.
引用
收藏
页码:170 / 185
页数:16
相关论文
共 146 条
[11]   Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0 [J].
Asnicar, Francesco ;
Thomas, Andrew Maltez ;
Beghini, Francesco ;
Mengoni, Claudia ;
Manara, Serena ;
Manghi, Paolo ;
Zhu, Qiyun ;
Bolzan, Mattia ;
Cumbo, Fabio ;
May, Uyen ;
Sanders, Jon G. ;
Zolfo, Moreno ;
Kopylova, Evguenia ;
Pasolli, Edoardo ;
Knight, Rob ;
Mirarab, Siavash ;
Huttenhower, Curtis ;
Segata, Nicola .
NATURE COMMUNICATIONS, 2020, 11 (01)
[12]   Bacteria differently regulate mRNA abundance to specifically respond to various stresses [J].
Bartholomaeus, Alexander ;
Fedyunin, Ivan ;
Feist, Peter ;
Sin, Celine ;
Zhang, Gong ;
Valleriani, Angelo ;
Ignatova, Zoya .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2063)
[13]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[14]  
Benson D. A., 2012, Nucleic Acids Res., V40, pD48 D53
[15]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[16]   Sequencing of human genomes with nanopore technology [J].
Bowden, Rory ;
Davies, Robert W. ;
Heger, Andreas ;
Pagnamenta, Alistair T. ;
de Cesare, Mariateresa ;
Oikkonen, Laura E. ;
Parkes, Duncan ;
Freeman, Colin ;
Dhalla, Fatima ;
Patel, Smita Y. ;
Popitsch, Niko ;
Ip, Camilla L. C. ;
Roberts, Hannah E. ;
Salatino, Silvia ;
Lockstone, Helen ;
Lunter, Gerton ;
Taylor, Jenny C. ;
Buck, David ;
Simpson, Michael A. ;
Donnelly, Peter .
NATURE COMMUNICATIONS, 2019, 10 (1)
[17]   High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling [J].
Brar, Gloria A. ;
Yassour, Moran ;
Friedman, Nir ;
Regev, Aviv ;
Ingolia, Nicholas T. ;
Weissman, Jonathan S. .
SCIENCE, 2012, 335 (6068) :552-557
[18]   The capacious hologenome [J].
Brucker, Robert M. ;
Bordenstein, Seth R. .
ZOOLOGY, 2013, 116 (05) :260-261
[19]   Chapter 11: Genome-Wide Association Studies [J].
Bush, William S. ;
Moore, Jason H. .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (12)
[20]   Realizing the potential of full-length transcriptome sequencing [J].
Byrne, Ashley ;
Cole, Charles ;
Volden, Roger ;
Vollmers, Christopher .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1786)