Multi-omics data integration considerations and study design for biological systems and disease

被引:108
作者
Graw, Stefan [1 ]
Chappell, Kevin [1 ]
Washam, Charity L. [1 ,2 ]
Gies, Allen [1 ]
Bird, Jordan [1 ]
Robeson, Michael S., II [3 ]
Byrum, Stephanie D. [1 ,2 ]
机构
[1] Univ Arkansas Med Sci, Dept Biochem & Mol Biol, 4301 West Markham St,Slot 516, Little Rock, AR 72205 USA
[2] Arkansas Childrens Res Inst, 13 Childrens Way, Little Rock, AR 72202 USA
[3] Univ Arkansas Med Sci, Dept Biomed Informat, Little Rock, AR 72205 USA
基金
美国国家卫生研究院;
关键词
WEB-BASED TOOL; GUT MICROBIOTA; SAMPLE-SIZE; RESOURCE; METABOLOMICS; IMPACT; TRANSCRIPTOMICS; GREENGENES; DISCOVERY; INTERPLAY;
D O I
10.1039/d0mo00041h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the advancement of next-generation sequencing and mass spectrometry, there is a growing need for the ability to merge biological features in order to study a system as a whole. Features such as the transcriptome, methylome, proteome, histone post-translational modifications and the microbiome all influence the host response to various diseases and cancers. Each of these platforms have technological limitations due to sample preparation steps, amount of material needed for sequencing, and sequencing depth requirements. These features provide a snapshot of one level of regulation in a system. The obvious next step is to integrate this information and learn how genes, proteins, and/or epigenetic factors influence the phenotype of a disease in context of the system. In recent years, there has been a push for the development of data integration methods. Each method specifically integrates a subset of omics data using approaches such as conceptual integration, statistical integration, model-based integration, networks, and pathway data integration. In this review, we discuss considerations of the study design for each data feature, the limitations in gene and protein abundance and their rate of expression, the current data integration methods, and microbiome influences on gene and protein expression. The considerations discussed in this review should be regarded when developing new algorithms for integrating multi-omics data.
引用
收藏
页码:170 / 185
页数:16
相关论文
共 146 条
[1]   Evaluating the potential of residual Pap test fluid as a resource for the metaproteomic analysis of the cervical-vaginal microbiome [J].
Afiuni-Zadeh, Somaieh ;
Boylan, Kristin L. M. ;
Jagtap, Pratik D. ;
Griffin, Timothy J. ;
Rudney, Joel D. ;
Peterson, Marnie L. ;
Skubitz, Amy P. N. .
SCIENTIFIC REPORTS, 2018, 8
[2]  
Alberts B., 1994, MOL BIOL CELL
[3]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[4]   Interplay of Darwinian Selection, Lamarckian Induction and Microvesicle Transfer on Drug Resistance in Cancer [J].
Alvarez-Arenas, Arturo ;
Podolski-Renic, Ana ;
Belmonte-Beitia, Juan ;
Pesic, Milica ;
Calvo, Gabriel F. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[5]   Opportunities and challenges in long-read sequencing data analysis [J].
Amarasinghe, Shanika L. ;
Su, Shian ;
Dong, Xueyi ;
Zappia, Luke ;
Ritchie, Matthew E. ;
Gouil, Quentin .
GENOME BIOLOGY, 2020, 21 (01)
[6]   The human plasma proteome - History, character, and diagnostic prospects [J].
Anderson, NL ;
Anderson, NG .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (11) :845-867
[7]  
[Anonymous], Illumina Sequencing Platforms
[8]  
[Anonymous], 2013, 16S metagenomic sequencing library prearation
[9]  
part # 15044223 rev. B
[10]  
[Anonymous], 2014, Microbe