Multi-omics data integration considerations and study design for biological systems and disease

被引:94
|
作者
Graw, Stefan [1 ]
Chappell, Kevin [1 ]
Washam, Charity L. [1 ,2 ]
Gies, Allen [1 ]
Bird, Jordan [1 ]
Robeson, Michael S., II [3 ]
Byrum, Stephanie D. [1 ,2 ]
机构
[1] Univ Arkansas Med Sci, Dept Biochem & Mol Biol, 4301 West Markham St,Slot 516, Little Rock, AR 72205 USA
[2] Arkansas Childrens Res Inst, 13 Childrens Way, Little Rock, AR 72202 USA
[3] Univ Arkansas Med Sci, Dept Biomed Informat, Little Rock, AR 72205 USA
基金
美国国家卫生研究院;
关键词
WEB-BASED TOOL; GUT MICROBIOTA; SAMPLE-SIZE; RESOURCE; METABOLOMICS; IMPACT; TRANSCRIPTOMICS; GREENGENES; DISCOVERY; INTERPLAY;
D O I
10.1039/d0mo00041h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the advancement of next-generation sequencing and mass spectrometry, there is a growing need for the ability to merge biological features in order to study a system as a whole. Features such as the transcriptome, methylome, proteome, histone post-translational modifications and the microbiome all influence the host response to various diseases and cancers. Each of these platforms have technological limitations due to sample preparation steps, amount of material needed for sequencing, and sequencing depth requirements. These features provide a snapshot of one level of regulation in a system. The obvious next step is to integrate this information and learn how genes, proteins, and/or epigenetic factors influence the phenotype of a disease in context of the system. In recent years, there has been a push for the development of data integration methods. Each method specifically integrates a subset of omics data using approaches such as conceptual integration, statistical integration, model-based integration, networks, and pathway data integration. In this review, we discuss considerations of the study design for each data feature, the limitations in gene and protein abundance and their rate of expression, the current data integration methods, and microbiome influences on gene and protein expression. The considerations discussed in this review should be regarded when developing new algorithms for integrating multi-omics data.
引用
收藏
页码:170 / 185
页数:16
相关论文
共 50 条
  • [1] MODIMO: Workshop on Multi-Omics Data Integration for Modelling Biological Systems
    Beccuti, Marco
    Bonnici, Vincenzo
    Giugno, Rosalba
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4870 - 4871
  • [2] MODIMO: Workshop on Multi-Omics Data Integration for Modelling Biological Systems
    Avesani, Simone
    Bonnici, Vincenzo
    Pernice, Simone
    Beccuti, Marco
    Giugno, Rosalba
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 5259 - 5262
  • [3] A Commentary on Multi-omics Data Integration in Systems Vaccinology
    Shannon, Casey P.
    Lee, Amy H. Y.
    Tebbutt, Scott J.
    Singh, Amrit
    JOURNAL OF MOLECULAR BIOLOGY, 2024, 436 (08)
  • [4] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [5] Proteomics Is Not an Island: Multi-omics Integration Is the Key to Understanding Biological Systems
    Zhang, Bing
    Kuster, Bernhard
    MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (08) : S1 - S4
  • [6] Biological Random Walks: multi-omics integration for disease gene prioritization
    Gentili, Michele
    Martini, Leonardo
    Sponziello, Marialuisa
    Becchetti, Luca
    BIOINFORMATICS, 2022, 38 (17) : 4145 - 4152
  • [7] A cloud solution for multi-omics data integration
    Tordini, Fabio
    2016 INT IEEE CONFERENCES ON UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING AND COMMUNICATIONS, CLOUD AND BIG DATA COMPUTING, INTERNET OF PEOPLE, AND SMART WORLD CONGRESS (UIC/ATC/SCALCOM/CBDCOM/IOP/SMARTWORLD), 2016, : 559 - 566
  • [8] Towards multi-omics synthetic data integration
    Selvarajoo, Kumar
    Maurer-Stroh, Sebastian
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [9] Identification of Osteoporosis Biomarkers and Biological Interactions Using Multi-omics Data Integration
    Liu, Anqi
    Jiang, Lindong
    Su, Kuan-Jui
    Zhang, Xiao
    Gong, Yun
    Qiu, Chuan
    Luo, Zhe
    Tian, Qing
    Ding, Zhengming
    Shen, Hui
    Deng, Hong-Wen
    JOURNAL OF BONE AND MINERAL RESEARCH, 2023, 38 : 152 - 153
  • [10] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)