Multi-omics data integration considerations and study design for biological systems and disease

被引:95
作者
Graw, Stefan [1 ]
Chappell, Kevin [1 ]
Washam, Charity L. [1 ,2 ]
Gies, Allen [1 ]
Bird, Jordan [1 ]
Robeson, Michael S., II [3 ]
Byrum, Stephanie D. [1 ,2 ]
机构
[1] Univ Arkansas Med Sci, Dept Biochem & Mol Biol, 4301 West Markham St,Slot 516, Little Rock, AR 72205 USA
[2] Arkansas Childrens Res Inst, 13 Childrens Way, Little Rock, AR 72202 USA
[3] Univ Arkansas Med Sci, Dept Biomed Informat, Little Rock, AR 72205 USA
基金
美国国家卫生研究院;
关键词
WEB-BASED TOOL; GUT MICROBIOTA; SAMPLE-SIZE; RESOURCE; METABOLOMICS; IMPACT; TRANSCRIPTOMICS; GREENGENES; DISCOVERY; INTERPLAY;
D O I
10.1039/d0mo00041h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the advancement of next-generation sequencing and mass spectrometry, there is a growing need for the ability to merge biological features in order to study a system as a whole. Features such as the transcriptome, methylome, proteome, histone post-translational modifications and the microbiome all influence the host response to various diseases and cancers. Each of these platforms have technological limitations due to sample preparation steps, amount of material needed for sequencing, and sequencing depth requirements. These features provide a snapshot of one level of regulation in a system. The obvious next step is to integrate this information and learn how genes, proteins, and/or epigenetic factors influence the phenotype of a disease in context of the system. In recent years, there has been a push for the development of data integration methods. Each method specifically integrates a subset of omics data using approaches such as conceptual integration, statistical integration, model-based integration, networks, and pathway data integration. In this review, we discuss considerations of the study design for each data feature, the limitations in gene and protein abundance and their rate of expression, the current data integration methods, and microbiome influences on gene and protein expression. The considerations discussed in this review should be regarded when developing new algorithms for integrating multi-omics data.
引用
收藏
页码:170 / 185
页数:16
相关论文
共 145 条
  • [1] Evaluating the potential of residual Pap test fluid as a resource for the metaproteomic analysis of the cervical-vaginal microbiome
    Afiuni-Zadeh, Somaieh
    Boylan, Kristin L. M.
    Jagtap, Pratik D.
    Griffin, Timothy J.
    Rudney, Joel D.
    Peterson, Marnie L.
    Skubitz, Amy P. N.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [2] Alberts B, 1994, MOL BIOL CELL, V3
  • [3] A global reference for human genetic variation
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Wang, Jun
    Wilson, Richard K.
    Boerwinkle, Eric
    Doddapaneni, Harsha
    Han, Yi
    Korchina, Viktoriya
    Kovar, Christie
    Lee, Sandra
    Muzny, Donna
    Reid, Jeffrey G.
    Zhu, Yiming
    Chang, Yuqi
    Feng, Qiang
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Lan, Tianming
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Liu, Shengmao
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Tang, Meifang
    Wang, Bo
    [J]. NATURE, 2015, 526 (7571) : 68 - +
  • [4] Interplay of Darwinian Selection, Lamarckian Induction and Microvesicle Transfer on Drug Resistance in Cancer
    Alvarez-Arenas, Arturo
    Podolski-Renic, Ana
    Belmonte-Beitia, Juan
    Pesic, Milica
    Calvo, Gabriel F.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Opportunities and challenges in long-read sequencing data analysis
    Amarasinghe, Shanika L.
    Su, Shian
    Dong, Xueyi
    Zappia, Luke
    Ritchie, Matthew E.
    Gouil, Quentin
    [J]. GENOME BIOLOGY, 2020, 21 (01)
  • [6] The human plasma proteome - History, character, and diagnostic prospects
    Anderson, NL
    Anderson, NG
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (11) : 845 - 867
  • [7] [Anonymous], Illumina Sequencing Platforms
  • [8] [Anonymous], 2013, 16S Metagenomic Sequencing Library Preparation
  • [9] Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0
    Asnicar, Francesco
    Thomas, Andrew Maltez
    Beghini, Francesco
    Mengoni, Claudia
    Manara, Serena
    Manghi, Paolo
    Zhu, Qiyun
    Bolzan, Mattia
    Cumbo, Fabio
    May, Uyen
    Sanders, Jon G.
    Zolfo, Moreno
    Kopylova, Evguenia
    Pasolli, Edoardo
    Knight, Rob
    Mirarab, Siavash
    Huttenhower, Curtis
    Segata, Nicola
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] Bacteria differently regulate mRNA abundance to specifically respond to various stresses
    Bartholomaeus, Alexander
    Fedyunin, Ivan
    Feist, Peter
    Sin, Celine
    Zhang, Gong
    Valleriani, Angelo
    Ignatova, Zoya
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2063):