A knowledge-transfer-based learning framework for airspace operation complexity evaluation

被引:34
作者
Cao, Xianbin [1 ,2 ]
Zhu, Xi [1 ,2 ]
Tian, Zhencai [3 ]
Chen, Jun [4 ]
Wu, Dapeng [5 ]
Du, Wenbo [1 ,2 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Near Space Informat Syst, Beijing 100191, Peoples R China
[3] Civil Aviat Adm China, Operat Supervisory Ctr, Beijing 100710, Peoples R China
[4] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
[5] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
中国国家自然科学基金;
关键词
Airspace operation complexity; Complexity evaluation; Machine learning; Small samples; Knowledge transfer; Evaluator integration; AIR-TRAFFIC COMPLEXITY; DOMAIN ADAPTATION; KERNEL; REGULARIZATION; IMAGES;
D O I
10.1016/j.trc.2018.07.008
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
A sector is a component airspace whose operation is allocated to an air traffic controller. The operation complexity of a sector plays a critical role in the current Air Traffic Management system, e.g. it determines the workload volume of air traffic controllers and serves as a reliable index for airspace configuration and traffic flow management. Therefore, accurately evaluating the sector operation complexity is a problem of paramount importance in both practice and research. Due to numerous interacting factors, traditional methods based on only one single complexity indicator fail to accurately reflect the true complexity, especially when these factors are nonlinearly correlated. In light of these, the attempt to use machine learning models to mine the complex factor-complexity relationship has prevailed recently. The performance of these models however relies heavily on sufficient samples. The high cost of collecting ample data often results in a small training set, adversely impacting on the performance that these machine learning models can achieve. To overcome this problem, this paper for the first time proposes a new sector operation complexity evaluation framework based on knowledge transfer specifically for small-training-sample environment. The proposed framework is able to effectively mine knowledge hidden within the samples of the target sector, i.e. the sector undergoes evaluation, as well as other sectors, i.e. non-target sectors. Moreover, the framework can properly handle the integration between the knowledge derived from different sectors. Extensive experiments on real data of 6 sectors in China illustrate that our proposed framework can achieve promising performance on complexity evaluation when only a small training set of the target sector is available.
引用
收藏
页码:61 / 81
页数:21
相关论文
共 83 条
[1]   A survey of the state of the art in learning the kernels [J].
Abbasnejad, M. Ehsan ;
Ramachandram, Dhanesh ;
Mandava, Rajeswari .
KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 31 (02) :193-221
[2]   Transfer learning for class imbalance problems with inadequate data [J].
Al-Stouhi, Samir ;
Reddy, Chandan K. .
KNOWLEDGE AND INFORMATION SYSTEMS, 2016, 48 (01) :201-228
[3]   Systemic identification of airspace collision risk tipping points using an evolutionary multi-objective scenario-based methodology [J].
Alam, Sameer ;
Lokan, Chris ;
Aldis, Geoff ;
Barry, Steve ;
Butcher, Rob ;
Abbass, Hussein .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2013, 35 :57-84
[4]  
Alipanahi B., 2008, PROC 23 NAT C ARTIF, P598
[5]  
[Anonymous], 2007, ALGORITHMIC LEARNING
[6]  
[Anonymous], 2004, KERNEL METHODS PATTE
[7]  
[Anonymous], 2016, J BIG DATA
[8]  
[Anonymous], 2004, P 21 C MACH LEARN IC
[9]  
Averty P., 2005, P 6 US EUR AIR TRAFF
[10]  
Bishop C.M., 1995, Neural networks for pattern recognition