The Capacity of Private Information Retrieval

被引:276
|
作者
Sun, Hua [1 ]
Jafar, Syed Ali [1 ]
机构
[1] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Ctr Pervas Commun & Comp, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
Capacity; private information retrieval; BLIND INTERFERENCE ALIGNMENT; BROADCAST CHANNELS; DEMAND; ISCOD;
D O I
10.1109/TIT.2017.2689028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the private information retrieval (PIR) problem, a user wishes to retrieve, as efficiently as possible, one out of K messages from N non-communicating databases (each holds all K messages) while revealing nothing about the identity of the desired message index to any individual database. The information theoretic capacity of PIR is the maximum number of bits of desired information that can be privately retrieved per bit of downloaded information. For K messages and N databases, we show that the PIR capacity is (1+1 / N+1 / N-2 + center dot center dot center dot + 1 / NK-1)(-1). A remarkable feature of the capacity achieving scheme is that if we eliminate any subset of messages (by setting the message symbols to zero), the resulting scheme also achieves the PIR capacity for the remaining subset of messages.
引用
收藏
页码:4075 / 4088
页数:14
相关论文
共 50 条
  • [41] The Capacity of Multi-user Private Information Retrieval for Computationally Limited Databases
    Barnhart, William
    Tian, Zhi
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 759 - 763
  • [42] Achieving Maximum Distance Separable Private Information Retrieval Capacity With Linear Codes
    Kumar, Siddhartha
    Lin, Hsuan-Yin
    Rosnes, Eirik
    Graell i Amat, Alexandre
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) : 4243 - 4273
  • [43] Private Information Retrieval with Partially Known Private Side Information
    Wei, Yi-Peng
    Banawan, Karim
    Ulukus, Sennur
    2018 52ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2018,
  • [44] Authenticated private information retrieval
    Colombo, Simone
    Nikitin, Kirill
    Corrigan-Gibbs, Henry
    Wu, David J.
    Ford, Bryan
    PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM, 2023, : 3835 - 3851
  • [45] Tutorial: Private Information Retrieval
    Henry, Ryan
    CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, : 2608 - 2612
  • [46] Efficient private information retrieval
    Itoh, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (01): : 11 - 20
  • [47] Nearly private information retrieval
    Chakrabarti, Amit
    Shubina, Anna
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2007, PROCEEDINGS, 2007, 4708 : 383 - +
  • [48] Noisy Private Information Retrieval
    Banawan, Karim
    Ulukus, Sennur
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 1694 - 1698
  • [49] Verifiable Private Information Retrieval
    Ben-David, Shany
    Kalai, Yael Tauman
    Paneth, Omer
    THEORY OF CRYPTOGRAPHY, TCC 2022, PT III, 2022, 13749 : 3 - 32
  • [50] Committed Private Information Retrieval
    Cao, Quang
    Tran, Hong Yen
    Dau, Son Hoang
    Yi, Xun
    Viterbo, Emanuele
    Feng, Chen
    Huang, Yu-Chih
    Zhu, Jingge
    Kruglik, Stanislav
    Kiah, Han Mao
    COMPUTER SECURITY - ESORICS 2023, PT I, 2024, 14344 : 393 - 413