A Blow-Up Result for a Generalized Tricomi Equation with Nonlinearity of Derivative Type

被引:16
作者
Lucente, Sandra [1 ]
Palmieri, Alessandro [2 ]
机构
[1] Univ Bari, Dept Phys, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Pisa, Dept Math, Largo B Pontecorvo 5, I-56127 Pisa, Italy
关键词
Generalized Tricomi operator; Glassey exponent; Blow-up; Lifespan; GLOBAL-SOLUTIONS; WAVE-EQUATIONS; CAUCHY-PROBLEM; NONEXISTENCE;
D O I
10.1007/s00032-021-00326-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we prove a blow-up result for a semilinear generalized Tricomi equation with nonlinear term of derivative type, i.e., for the equation T(l)u = vertical bar partial derivative(t)u vertical bar(p), where T-l = partial derivative(2)(t) - t(2l)Delta. Smooth solutions blow up in finite time for positive Cauchy data when the exponent p of the nonlinear term is below Q/Q-2, where Q = (l + 1) n + 1 is the quasi-homogeneous dimension of the generalized Tricomi operator T-l. Furthermore, we get also an upper bound estimate for the lifespan.
引用
收藏
页码:45 / 57
页数:13
相关论文
共 32 条
[1]   A BLOW - UP RESULT FOR THE SEMILINEAR MOORE - GIBSON - THOMPSON EQUATION WITH NONLINEARITY OF DERIVATIVE TYPE IN THE CONSERVATIVE CASE [J].
Chen, Wenhui ;
Palmieri, Alessandro .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (04) :673-687
[2]  
D'Abbicco M, 2013, ADV NONLINEAR STUD, V13, P867
[3]   Nonlinear Liouville theorems for Grushin and Tricomi operators [J].
D'Ambrosio, L ;
Lucente, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :511-541
[4]  
D'Ancona P, 2001, MATH NACHR, V231, P5, DOI 10.1002/1522-2616(200111)231:1<5::AID-MANA5>3.0.CO
[5]  
2-M
[6]   A NOTE ON A THEOREM OF JORGENS [J].
DANCONA, P .
MATHEMATISCHE ZEITSCHRIFT, 1995, 218 (02) :239-252
[7]  
Ebert M.R., 2018, Methods for Partial Differential Equations. Qualitative Properties of Solutions, Phase Space Analysis
[8]  
Franchi B., 1983, ANN SCUOLA NORM SUP, V4, P523
[9]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[10]   On semilinear Tricomi equations with critical exponents or in two space dimensions [J].
He, Daoyin ;
Witt, Ingo ;
Yin, Huicheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) :8102-8137