Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells

被引:339
作者
Ning, Ziyang [1 ]
Jolly, Dominic Spencer [1 ]
Li, Guanchen [2 ,3 ]
De Meyere, Robin [1 ]
Pu, Shengda D. [1 ]
Chen, Yang [1 ]
Kasemchainan, Jitti [1 ,2 ]
Ihli, Johannes [4 ]
Gong, Chen [1 ]
Liu, Boyang [1 ,2 ]
Melvin, Dominic L. R. [1 ,2 ]
Bonnin, Anne [4 ]
Magdysyuk, Oxana [5 ]
Adamson, Paul [1 ,2 ]
Hartley, Gareth O. [1 ,2 ]
Monroe, Charles W. [2 ,3 ]
Marrow, T. James [1 ]
Bruce, Peter G. [1 ,2 ,6 ,7 ]
机构
[1] Univ Oxford, Dept Mat, Oxford, England
[2] Faraday Inst, Didcot, Oxon, England
[3] Univ Oxford, Dept Engn Sci, Oxford, England
[4] Paul Scherrer Inst, Villigen, Switzerland
[5] Diamond Light Source, Didcot, Oxon, England
[6] Univ Oxford, Dept Chem, Oxford, England
[7] Univ Oxford, Henry Royce Inst, Oxford, England
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
INTERFACIAL REACTIVITY; ELECTRODEPOSITION; KINETICS; GROWTH; DEFORMATION; PENETRATION; TEMPERATURE; PROPAGATION; CHALLENGES; DEPOSITION;
D O I
10.1038/s41563-021-00967-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium dendrite (filament) propagation through ceramic electrolytes, leading to short circuits at high rates of charge, is one of the greatest barriers to realizing high-energy-density all-solid-state lithium-anode batteries. Utilizing in situ X-ray computed tomography coupled with spatially mapped X-ray diffraction, the propagation of cracks and the propagation of lithium dendrites through the solid electrolyte have been tracked in a Li/Li6PS5Cl/Li cell as a function of the charge passed. On plating, cracking initiates with spallation, conical 'pothole'-like cracks that form in the ceramic electrolyte near the surface with the plated electrode. The spallations form predominantly at the lithium electrode edges where local fields are high. Transverse cracks then propagate from the spallations across the electrolyte from the plated to the stripped electrode. Lithium ingress drives the propagation of the spallation and transverse cracks by widening the crack from the rear; that is, the crack front propagates ahead of the Li. As a result, cracks traverse the entire electrolyte before the Li arrives at the other electrode, and therefore before a short circuit occurs. Lithium dendrite propagation through ceramic electrolytes can prevent the realization of high-energy-density all-solid-state lithium-anode batteries. The propagation of cracks and lithium dendrites through a solid electrolyte has now been tracked as a function of charge.
引用
收藏
页码:1121 / +
页数:10
相关论文
共 49 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]   High-Toughness Inorganic Solid Electrolytes via the Use of Reduced Graphene Oxide [J].
Athanasiou, Christos E. ;
Jin, Mok Yun ;
Ramirez, Cristina ;
Padture, Nitin P. ;
Sheldon, Brian W. .
MATTER, 2020, 3 (01) :212-229
[3]   An Analysis of Solid-State Electrodeposition-Induced Metal Plastic Flow and Predictions of Stress States in Solid Ionic Conductor Defects [J].
Barroso-Luque, Luis ;
Tu, Qingsong ;
Ceder, Gerbrand .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (02)
[4]   Digital volume correlation: Three-dimensional strain mapping using X-ray tomography [J].
Bay, BK ;
Smith, TS ;
Fyhrie, DP ;
Saad, M .
EXPERIMENTAL MECHANICS, 1999, 39 (03) :217-226
[5]   Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application [J].
Boulineau, Sylvain ;
Courty, Matthieu ;
Tarascon, Jean-Marie ;
Viallet, Virginie .
SOLID STATE IONICS, 2012, 221 :1-5
[6]   Modeling of lithium electrodeposition at the lithium/ceramic electrolyte interface: The role of interfacial resistance and surface defects [J].
Bucci, Giovanna ;
Christensen, Jake .
JOURNAL OF POWER SOURCES, 2019, 441
[7]  
Buffiere JY., 2000, XRAY TOMOGRAPHY MAT
[8]   Li metal deposition and stripping in a solid-state battery via Coble creep [J].
Chen, Yuming ;
Wang, Ziqiang ;
Li, Xiaoyan ;
Yao, Xiahui ;
Wang, Chao ;
Li, Yutao ;
Xue, Weijiang ;
Yu, Daiwei ;
Kim, So Yeon ;
Yang, Fei ;
Kushima, Akihiro ;
Zhang, Guoge ;
Huang, Haitao ;
Wu, Nan ;
Mai, Yiu-Wing ;
Goodenough, John B. ;
Li, Ju .
NATURE, 2020, 578 (7794) :251-+
[9]   Stack Pressure Considerations for Room-Temperature All-Solid-State Lithium Metal Batteries [J].
Doux, Jean-Marie ;
Han Nguyen ;
Tan, Darren H. S. ;
Banerjee, Abhik ;
Wang, Xuefeng ;
Wu, Erik A. ;
Jo, Chiho ;
Yang, Hedi ;
Meng, Ying Shirley .
ADVANCED ENERGY MATERIALS, 2020, 10 (01)
[10]   Lithiation- Induced Dilation Mapping in a Lithium- Ion Battery Electrode by 3D X- Ray Microscopy and Digital Volume Correlation [J].
Eastwood, David S. ;
Yufit, Vladimir ;
Gelb, Jeff ;
Gu, Allen ;
Bradley, Robert S. ;
Harris, Stephen J. ;
Brett, Daniel J. L. ;
Brandon, Nigel P. ;
Lee, Peter D. ;
Withers, Philip J. ;
Shearing, Paul R. .
ADVANCED ENERGY MATERIALS, 2014, 4 (04)