The Critical Role of Substrate in Stabilizing Phosphorene Nanoflake: A Theoretical Exploration

被引:83
作者
Gao, Junfeng [1 ]
Zhang, Gang [1 ]
Zhang, Yong-Wei [1 ]
机构
[1] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
关键词
DEPOSITION GRAPHENE GROWTH; BLACK PHOSPHORUS; TRANSPORT ANISOTROPY; LIQUID EXFOLIATION; CARBON CLUSTERS; LARGE-AREA; BAND-GAP; EDGE; DYNAMICS; FIELD;
D O I
10.1021/jacs.5b12472
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phosphorene, a new two-dimensional (2D) semiconductor, has received much interest due to its robust direct band gap and high charge mobility. Currently, however, phosphorene can only be produced by mechanical or liquid exfoliation, and it is still a significant challenge to directly epitaxially grow phosphorene, which greatly hinders its mass production and, thus, applications. In epitaxial growth, the stability of nanoscale cluster or flake on a substrate is crucial. Here, we perform ab initio energy optimizations and molecular dynamics simulations to explore the critical role of substrate on the stability of a representative phosphorene flake. Our calculations show that the stability of the phosphorene nanoflake is strongly dependent on the interaction strength between the nanoflake and substrate. Specifically, the strong interaction (0.75 eV/P atom) with Cu(111) substrate breaks up the phosphorene nanoflake, while the weak interaction (0.063 eV/P atom) with h-BN substrate fails to stabilize its 2D structure. Remarkably, we find that a substrate with a moderate interaction (about 0.35 eV/P atom) is able to stabilize the 2D characteristics of the nanoflake on a realistic time scale. Our findings here provide useful guidelines for searching suitable substrates for the directly epitaxial growth of phosphorene.
引用
收藏
页码:4763 / 4771
页数:9
相关论文
共 77 条
[1]  
Andres C.-G., 2014, 2D MATER, V1, DOI DOI 10.1088/2053-1583/1/2/025001
[2]   Breaking of Symmetry in Graphene Growth on Metal Substrates [J].
Artyukhov, Vasilii I. ;
Hao, Yufeng ;
Ruoff, Rodney S. ;
Yakobson, Boris I. .
PHYSICAL REVIEW LETTERS, 2015, 114 (11)
[3]   Equilibrium at the edge and atomistic mechanisms of graphene growth [J].
Artyukhov, Vasilii I. ;
Liu, Yuanyue ;
Yakobson, Boris I. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (38) :15136-15140
[4]   Air-Stable Transport in Graphene-Contacted, Fully Encapsulated Ultrathin Black Phosphorus-Based Field-Effect Transistors [J].
Avsar, Ahmet ;
Vera-Marun, Ivan J. ;
Tan, Jun You ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Castro Neto, Antonio H. ;
Oezyilmaz, Barbaros .
ACS NANO, 2015, 9 (04) :4138-4145
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Production of few-layer phosphorene by liquid exfoliation of black phosphorus [J].
Brent, Jack R. ;
Savjani, Nicky ;
Lewis, Edward A. ;
Haigh, Sarah J. ;
Lewis, David J. ;
O'Brien, Paul .
CHEMICAL COMMUNICATIONS, 2014, 50 (87) :13338-13341
[7]   Giant Phononic Anisotropy and Unusual Anharmonicity of Phosphorene: Interlayer Coupling and Strain Engineering [J].
Cai, Yongqing ;
Ke, Qingqing ;
Zhang, Gang ;
Feng, Yuan Ping ;
Shenoy, Vivek B. ;
Zhang, Yong-Wei .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (15) :2230-2236
[8]   Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene [J].
Cai, Yongqing ;
Zhang, Gang ;
Zhang, Yong-Wei .
SCIENTIFIC REPORTS, 2014, 4
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) Surface [J].
Chen, Wei ;
Chen, Hua ;
Lan, Haiping ;
Cui, Ping ;
Schulze, Tim P. ;
Zhu, Wenguang ;
Zhang, Zhenyu .
PHYSICAL REVIEW LETTERS, 2012, 109 (26)