Enhanced Visible-Light Photocatalytic Degradation of Antibiotics by MoS2-Modified U-g-C3N4/T-g-C3N4 Isotypic Heterojunction

被引:8
|
作者
Liu, Hongjin [1 ]
Wang, Yu [1 ]
Lv, Jun [1 ,2 ]
Xu, Guangqing [1 ,2 ]
Zhang, Xinyi [3 ]
Wu, Yucheng [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[2] Key Lab Adv Funct Mat & Devices Anhui Prov, Hefei 230009, Anhui, Peoples R China
[3] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
MoS2; ternary heterojunction; visible light; tetracycline hydrochloride; photodegradation; GRAPHITIC CARBON NITRIDE; HYDROGEN-EVOLUTION; G-C3N4; NANOSHEETS; MOS2; WATER; TETRACYCLINE; REDUCTION; CATALYST; HYBRID; DYE;
D O I
10.1142/S179329201950111X
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on U-g-C3N4 (U-gCN) and T-g-C3N4 (T-gCN) prepared with urea and thiourea as raw materials, respectively, a visible-light-driven MoS2-modified U-gCN/T-gCN/MoS2 (UTM) ternary heterojunction photocatalyst was successfully prepared using a sonication and bathing method. The photocatalytic activity of as-prepared photocatalyst was evaluated through the degradation of tetracycline hydrochloride (TC) and Rhodamine B (RhB) under the visible light irradiation. The UTM ternary heterojunction showed remarkably enhanced photocatalytic activity. For the degradation of TC and RhB, the degradation rates of 93.9% and 99.9% have been achieved after being irradiated under visible light for 2 h and 1 h, respectively. The enhanced photocatalytic performance can be ascribed to the role of loaded MoS2 cocatalyst and the well-formed interfaces between U-gCN and T-gCN, which not only enhance the light absorption, but also accelerate the separation and transfer of photogenerated electron-hole pairs. Furthermore, UTM ternary heterojunction has excellent recyclability and chemical stability. The photodegradation rates of 89.9% and 96.78% of TC and RhB have been obtained, respectively, after being reused for five times. Sacrificial agent tests demonstrate that center dot O-2(-) is the major reactive species in the photocatalytic reaction system.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Facile synthesis of a g-C3N4 isotype composite with enhanced visible-light photocatalytic activity
    Shi, Lei
    Liang, Lin
    Wang, Fangxiao
    Liu, Mengshuai
    Sun, Jianmin
    RSC ADVANCES, 2015, 5 (123): : 101843 - 101849
  • [32] Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies
    Sun, Liming
    Zhao, Xian
    Jia, Chun-Jiang
    Zhou, Yixuan
    Cheng, Xiufeng
    Li, Pan
    Liu, Li
    Fan, Weiliu
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (44) : 23428 - 23438
  • [33] Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate
    Jin, Chongyue
    Kang, Jin
    Li, Zhilin
    Wang, Min
    Wu, Zengmin
    Xie, Yuanhua
    APPLIED SURFACE SCIENCE, 2020, 514
  • [34] Construction of g-C3N4-Ferrocene Copolymers for Enhanced Visible-Light Photocatalytic Activity
    Shang, Tongtong
    Chen, Shanshan
    Wei, Zihan
    Huang, Dongling
    Yang, Shun
    CHEMISTRYSELECT, 2021, 6 (31): : 8114 - 8119
  • [35] Synthesis and enhanced visible-light photocatalytic activity of wollastonite/g-C3N4 composite
    Yao, Guangyuan
    Sun, Zhiming
    Zheng, Shuilin
    MATERIALS RESEARCH BULLETIN, 2017, 86 : 186 - 193
  • [36] Ag/Nanodiamond/g-C3N4 heterostructures with enhanced visible-light photocatalytic performance
    Su, Li-Xi
    Lou, Qing
    Shan, Chong-Xin
    Chen, De-Liang
    Zang, Jin-Hao
    Liu, Lan-Jun
    APPLIED SURFACE SCIENCE, 2020, 525
  • [37] Synthesis and Visible Light Photocatalytic Performance of MoS2/g-C3N4 Composites
    Xu Meng-Qiu
    Chai Bo
    Yan Jun-Tao
    Wang Hai-Bo
    Ren Zhan-Dong
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2017, 33 (03) : 389 - 395
  • [38] In Situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis
    Dong, Fan
    Zhao, Zaiwang
    Xiong, Ting
    Ni, Zilin
    Zhang, Wendong
    Sun, Yanjuan
    Ho, Wing-Kei
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) : 11392 - 11401
  • [39] Insight into enhanced visible-light photocatalytic activity of SWCNTs/g-C3N4 nanocomposites from first principles
    Xu, Liang
    Zeng, Jian
    Li, Quan
    Chen, Tong
    Luo, Kai-Wu
    Luo, Xin
    Peng, Bojun
    Ma, Zongle
    Wang, Ling-Ling
    Zhu, Xiaojun
    Huang, Shuhui
    Liu, Desheng
    Xiong, S. X.
    Shuai, Cijun
    APPLIED SURFACE SCIENCE, 2020, 530 (530)
  • [40] Magnetically separable Ni/g-C3N4 nanocomposites for enhanced visible-light photocatalytic degradation of methylene blue and ciprofloxacin
    Zhou, F. Y.
    Mao, J. N.
    Peng, X. L.
    Hong, B.
    Xu, J. C.
    Zeng, Y. X.
    Han, Y. B.
    Ge, H. L.
    Wang, X. Q.
    DIAMOND AND RELATED MATERIALS, 2022, 126