Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation

被引:297
作者
Fang, Leyuan [1 ]
Li, Shutao [1 ]
Kang, Xudong [1 ]
Benediktsson, Jon Atli [2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavk, Iceland
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2014年 / 52卷 / 12期
基金
中国国家自然科学基金;
关键词
Classification; hyperspectral image (HSI); multiscale adaptive sparse representation (MASR); multiscale spatial information; sparse representation; REMOTE-SENSING IMAGES; SEMISUPERVISED CLASSIFICATION; FEATURE-EXTRACTION;
D O I
10.1109/TGRS.2014.2318058
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sparse representation has been demonstrated to be a powerful tool in classification of hyperspectral images (HSIs). The spatial context of an HSI can be exploited by first defining a local region for each test pixel and then jointly representing pixels within each region by a set of common training atoms (samples). However, the selection of the optimal region scale (size) for different HSIs with different types of structures is a nontrivial task. In this paper, considering that regions of different scales incorporate the complementary yet correlated information for classification, a multiscale adaptive sparse representation (MASR) model is proposed. The MASR effectively exploits spatial information at multiple scales via an adaptive sparse strategy. The adaptive sparse strategy not only restricts pixels from different scales to be represented by training atoms from a particular class but also allows the selected atoms for these pixels to be varied, thus providing an improved representation. Experiments on several real HSI data sets demonstrate the qualitative and quantitative superiority of the proposed MASR algorithm when compared to several well-known classifiers.
引用
收藏
页码:7738 / 7749
页数:12
相关论文
共 51 条
[1]  
[Anonymous], 2000, INTRO REMOTE SENSING
[2]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[3]   Classification and feature extraction for remote sensing images from urban areas based on morphological transformations [J].
Benediktsson, JA ;
Pesaresi, M ;
Arnason, K .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (09) :1940-1949
[4]   Gradient pursuits [J].
Blumensath, Thomas ;
Davies, Mike E. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (06) :2370-2382
[5]  
Borengasser M., 2008, Hyperspectral Remote Sensing - Principles and Applications
[6]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[7]   A novel transductive SVM for semisupervised classification of remote-sensing images [J].
Bruzzone, Lorenzo ;
Chi, Mingmin ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3363-3373
[8]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[9]   SPARSE REPRESENTATION OF (MULTISCALE) HISTOGRAMS FOR FACE RECOGNITION ROBUST TO REGISTRATION AND ILLUMINATION PROBLEMS [J].
Chan, Chi Ho ;
Kittler, Josef .
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, :2441-2444
[10]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)