Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate)

被引:39
|
作者
Lee, Sangmook [1 ]
Lee, Youngjoo
Lee, Jae Wook
机构
[1] Dongduk Womens Univ, Div Appl Chem, Seoul 136714, South Korea
[2] Sogang Univ, Div Biochem Engn, Seoul 121742, South Korea
关键词
poly(lactic acid); poly(butylene adipate-co-terephthalate); biodegradable; blend; ultrasound;
D O I
10.1007/BF03218751
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study investigated the effect of ultrasound irradiation on the blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT). The blends of PLA/PBAT(50/50) (PBAT50) were prepared in a melt mixer with an ultrasonic device attached. Thermal, theological, and mechanical properties, morphology, and biodegradability of the sonicated blends were analysed. The viscosity of the sonicated blends was increased by the ultrasound irradiation owing to the strong interaction. The morphology of the sonicated blends was significantly dependent on the duration of the ultrasound irradiation. For PBAT50, the phase size reduction was maximized when the blends were ultrasonically irradiated for 30 sec. At longer duration of ultrasound irradiation, the PBAT phase underwent flocculation. Measurement of the tensile properties showed an increased breakage tensile stress and an enhanced Young's modulus when the blends were properly irradiated. This improvement was ascribed to better adhesion between the PLA matrix and the PBAT domain and to better dispersion of the PBAT phase. However, the tensile properties were maximized after excessive energy irradiation, which was ascribed to an emulsifying effect leading to coalescence of the PBAT phase. Impact strength was increased to reach a peak with the ultrasound irradiation, and was higher than the untreated sample for all sonicated samples due to the difference of failure mechanism between the tensile test and the impact test.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 50 条
  • [41] Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate)
    Ren, Jie
    Fu, Hongye
    Ren, Tianbin
    Yuan, Weizhong
    CARBOHYDRATE POLYMERS, 2009, 77 (03) : 576 - 582
  • [42] Mechanical and flammability properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends and nanocomposites: Effects of compatibilizer and graphene
    Shrivastava, Nilesh Kumar
    Wooi, Ooi Shu
    Hassan, Azman
    Inuwa, Ibrahim Mohammed
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2018, 14 (04): : 425 - 431
  • [43] Effect of electron beam irradiation dose on the properties of commercial biodegradable poly(lactic acid), poly(butylenes adipate-co-terephthalate) and their blends
    Zhao, Yuping
    Li, Qiuxuan
    Wang, Bowen
    Wang, Yaming
    Liu, Chuntai
    Shen, Changyu
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2020, 478 : 131 - 136
  • [44] The Effect of Zn2(BDC)2 Metal Organic Framework on the Miscibility and Properties of Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Biodegradable Blends
    Benbelaid, Fatima
    Bouakaz, Boubkeur Seddik
    Djermoune, Atmane
    Ajji, Abdellah
    Habi, Abderrahmane
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2024,
  • [45] Preparation of Polymer Blends between Poly (L-lactic acid), Poly (butylene succinate-co-adipate) and Poly (butylene adipate-co-terephthalate) for Blow Film Industrial Application
    Pivsa-Art, Weraporn
    Pavasupree, Sorapong
    O-Charoen, Narongchai
    Insuan, Ubon
    Jailak, Puritud
    Pivsa-Art, Sommai
    9TH ECO-ENERGY AND MATERIALS SCIENCE AND ENGINEERING SYMPOSIUM, 2011, 9
  • [46] The effect of MDI on the structure and mechanical properties of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate) blends
    Pan, Hongwei
    Li, Zonglin
    Yang, Jia
    Li, Xin
    Ai, Xue
    Hao, Yanping
    Zhang, Huiliang
    Dong, Lisong
    RSC ADVANCES, 2018, 8 (09): : 4610 - 4623
  • [47] Investigation of Reactive Compatibilization on Degradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends with Lysine Diisocyanate
    Chen, Jiaoyu
    Wang, Xin
    Huang, Yu
    Zhang, Xiao
    Sun, Long
    Lu, Lingjie
    Li, Xiangqiang
    Shen, Lunjie
    Hong, Jie
    Zhou, Weihua
    Wu, Yang
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2025,
  • [48] Influence of nanosilica and chain extender on the mechanical behavior of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
    Khonakdar, Hanieh
    Yazdanbakhsh, Amir Hossein
    Mousavi, Seyed Rasoul
    Ahmadi, Shervin
    Arabi, Hasan
    Ruckdaschel, Holger
    Khonakdar, Hossein Ali
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (44)
  • [49] Selective Localization of Carbon Nanotubes in Poly(lactic acid)/ Poly(butylene adipate-co-terephthalate) Blends with Improved Toughness
    Li, Guili
    Feng, Qiao
    Chen, Shufang
    Yin, Tianxin
    He, Yixin
    Xie, Dan
    Mao, Chenjing
    Shao, Chunguang
    Gao, Peng
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2024, 40 (07): : 63 - 69
  • [50] Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent
    Naiwen Zhang
    Qinfeng Wang
    Jie Ren
    Liang Wang
    Journal of Materials Science, 2009, 44 : 250 - 256