Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate)

被引:39
|
作者
Lee, Sangmook [1 ]
Lee, Youngjoo
Lee, Jae Wook
机构
[1] Dongduk Womens Univ, Div Appl Chem, Seoul 136714, South Korea
[2] Sogang Univ, Div Biochem Engn, Seoul 121742, South Korea
关键词
poly(lactic acid); poly(butylene adipate-co-terephthalate); biodegradable; blend; ultrasound;
D O I
10.1007/BF03218751
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study investigated the effect of ultrasound irradiation on the blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT). The blends of PLA/PBAT(50/50) (PBAT50) were prepared in a melt mixer with an ultrasonic device attached. Thermal, theological, and mechanical properties, morphology, and biodegradability of the sonicated blends were analysed. The viscosity of the sonicated blends was increased by the ultrasound irradiation owing to the strong interaction. The morphology of the sonicated blends was significantly dependent on the duration of the ultrasound irradiation. For PBAT50, the phase size reduction was maximized when the blends were ultrasonically irradiated for 30 sec. At longer duration of ultrasound irradiation, the PBAT phase underwent flocculation. Measurement of the tensile properties showed an increased breakage tensile stress and an enhanced Young's modulus when the blends were properly irradiated. This improvement was ascribed to better adhesion between the PLA matrix and the PBAT domain and to better dispersion of the PBAT phase. However, the tensile properties were maximized after excessive energy irradiation, which was ascribed to an emulsifying effect leading to coalescence of the PBAT phase. Impact strength was increased to reach a peak with the ultrasound irradiation, and was higher than the untreated sample for all sonicated samples due to the difference of failure mechanism between the tensile test and the impact test.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 50 条
  • [41] Properties of 3D Printable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends and Nano Talc Composites
    Prasong, Wattanachai
    Muanchan, Paritat
    Ishigami, Akira
    Thumsorn, Supaphorn
    Kurose, Takashi
    Ito, Hiroshi
    JOURNAL OF NANOMATERIALS, 2020, 2020
  • [42] A study of poly vinyl chloride/poly(butylene adipate-co-terephthalate) blends
    Ibrahim, Nor Azowa
    Rahim, Nazri M.
    Yunus, Wan Zin Wan
    Sharif, Jamaliah
    JOURNAL OF POLYMER RESEARCH, 2011, 18 (05) : 891 - 896
  • [43] High Performance and Fully Biodegradable Poly (lactic acid) (PLA) Composites Modified by Poly (Butylene Adipate-co-terephthalate) (PBAT): a Review
    Wang X.
    Shi M.
    Yu X.
    Peng S.
    Zhao X.
    Cailiao Daobao/Materials Reports, 2019, 33 (06): : 1897 - 1909
  • [44] Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing
    Signori, Francesca
    Coltelli, Maria-Beatrice
    Bronco, Simona
    POLYMER DEGRADATION AND STABILITY, 2009, 94 (01) : 74 - 82
  • [45] Effect of Glycerol Stearates on the Thermal and Barrier Properties of Biodegradable Poly(butylene Adipate-Co-Terephthalate)
    Yuan, Jing
    Zhang, Xinpeng
    Xu, Jun
    Ding, Jianping
    Li, Wanli
    Guo, Baohua
    MATERIALS, 2024, 17 (23)
  • [46] Binary Green Blends of Poly(lactic acid) with Poly(butylene adipate-co-butylene terephthalate) and Poly(butylene succinate-co-butylene adipate) and Their Nanocomposites
    Coiai, Serena
    Di Lorenzo, Maria Laura
    Cinelli, Patrizia
    Righetti, Maria Cristina
    Passaglia, Elisa
    POLYMERS, 2021, 13 (15)
  • [47] Study on the preferential distribution of acetyl tributyl citrate in poly (lactic) acid-poly(butylene adipate-co-terephthalate) blends
    Aliotta, Laura
    Canesi, Ilaria
    Lazzeri, Andrea
    POLYMER TESTING, 2021, 98
  • [48] Effect of Additive on Crystallization and Mechanical Properties of Polymer Blends of Poly(lactic acid) and Poly[(butylene succinate)-co-adipate]
    Pivsa-Art, Sommai
    Thumsorn, Supaphorn
    Pavasupree, Sorapong
    O-Charoen, Narongchai
    Pivsa-Art, Weraporn
    Yamane, Hideki
    Ohara, Hitomi
    10TH ECO-ENERGY AND MATERIALS SCIENCE AND ENGINEERING SYMPOSIUM, 2013, 34 : 563 - 571
  • [49] Improvement of compatibility and mechanical properties of the poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends and films by reactive extrusion with chain extender
    Li, Xin
    Yan, Xiangyu
    Yang, Jia
    Pan, Hongwei
    Gao, Guanghui
    Zhang, Huiliang
    Dong, Lisong
    POLYMER ENGINEERING AND SCIENCE, 2018, 58 (10) : 1868 - 1878
  • [50] Influence of poly(butylenes adipate-co-terephthalate) on the properties of the biodegradable composites based on ramie/poly(lactic acid)
    Yu, Tao
    Li, Yan
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2014, 58 : 24 - 29