Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate)

被引:39
|
作者
Lee, Sangmook [1 ]
Lee, Youngjoo
Lee, Jae Wook
机构
[1] Dongduk Womens Univ, Div Appl Chem, Seoul 136714, South Korea
[2] Sogang Univ, Div Biochem Engn, Seoul 121742, South Korea
关键词
poly(lactic acid); poly(butylene adipate-co-terephthalate); biodegradable; blend; ultrasound;
D O I
10.1007/BF03218751
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study investigated the effect of ultrasound irradiation on the blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT). The blends of PLA/PBAT(50/50) (PBAT50) were prepared in a melt mixer with an ultrasonic device attached. Thermal, theological, and mechanical properties, morphology, and biodegradability of the sonicated blends were analysed. The viscosity of the sonicated blends was increased by the ultrasound irradiation owing to the strong interaction. The morphology of the sonicated blends was significantly dependent on the duration of the ultrasound irradiation. For PBAT50, the phase size reduction was maximized when the blends were ultrasonically irradiated for 30 sec. At longer duration of ultrasound irradiation, the PBAT phase underwent flocculation. Measurement of the tensile properties showed an increased breakage tensile stress and an enhanced Young's modulus when the blends were properly irradiated. This improvement was ascribed to better adhesion between the PLA matrix and the PBAT domain and to better dispersion of the PBAT phase. However, the tensile properties were maximized after excessive energy irradiation, which was ascribed to an emulsifying effect leading to coalescence of the PBAT phase. Impact strength was increased to reach a peak with the ultrasound irradiation, and was higher than the untreated sample for all sonicated samples due to the difference of failure mechanism between the tensile test and the impact test.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 50 条
  • [31] Effect of blending procedures and reactive compatibilizers on the properties of biodegradable poly(butylene adipate co-terephthalate)/poly(lactic acid) blends
    Wu, Dandan
    Huang, Anping
    Fan, Jie
    Xu, Renwei
    Liu, Peng
    Li, Guangquan
    Yang, Shiyuan
    JOURNAL OF POLYMER ENGINEERING, 2021, 41 (02) : 95 - 108
  • [32] The effect of the interfacial assembly of nano-silica in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends on morphology, rheology and mechanical properties
    Dil, Ebrahim Jalali
    Virgilio, Nick
    Favis, Basil D.
    EUROPEAN POLYMER JOURNAL, 2016, 85 : 635 - 646
  • [33] Characterization and processing of Biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate)
    Lee, S
    Lee, JW
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2005, 17 (02) : 71 - 77
  • [34] Preparation of Polymer Blends between Poly (L-lactic acid), Poly (butylene succinate-co-adipate) and Poly (butylene adipate-co-terephthalate) for Blow Film Industrial Application
    Pivsa-Art, Weraporn
    Pavasupree, Sorapong
    O-Charoen, Narongchai
    Insuan, Ubon
    Jailak, Puritud
    Pivsa-Art, Sommai
    9TH ECO-ENERGY AND MATERIALS SCIENCE AND ENGINEERING SYMPOSIUM, 2011, 9
  • [35] Study of the miscibility of poly (lactic acid) / poly (butylene adipate-co-terephthalate) blends prepared by solvent-casting method
    Cobo, Fernanda Nardo
    de Santana, Henrique
    de Carvalho, Gizilene Maria
    Yamashita, Fabio
    MATERIA-RIO DE JANEIRO, 2021, 26 (02):
  • [36] Compatibility and Impact Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blend Using Poly(butyl acrylate)
    Lee, Jae Bin
    Kim, Do Young
    Nam, KiBeom
    Seo, Kwan Ho
    Lee, Dong Yun
    POLYMER-KOREA, 2020, 44 (05) : 689 - 694
  • [37] A study of poly vinyl chloride / poly(butylene adipate-co-terephthalate) blends
    Nor Azowa Ibrahim
    Nazri M. Rahim
    Wan Zin Wan Yunus
    Jamaliah Sharif
    Journal of Polymer Research, 2011, 18 : 891 - 896
  • [38] Rheological, thermal and mechanical properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate)/poly(propylene carbonate) polyurethane trinary blown films
    Zhao, Jili
    Li, Xin
    Pan, Hongwei
    Ai, Xue
    Yang, Huili
    Zhang, Huiliang
    Gao, Ge
    Dong, Lisong
    POLYMER BULLETIN, 2020, 77 (08) : 4235 - 4258
  • [39] Plasticization Effect of Poly(Lactic Acid) in the Poly(Butylene Adipate-co-Terephthalate) Blown Film for Tear Resistance Improvement
    Kim, Do Young
    Lee, Jae Bin
    Lee, Dong Yun
    Seo, Kwan Ho
    POLYMERS, 2020, 12 (09)
  • [40] Synergistic reinforcing of poly(lactic acid) by poly(butylene adipate-co-terephthalate) and alumina nanoparticles
    Chen, Jie
    Hu, Rong-Rong
    Jin, Fan-Long
    Park, Soo-Jin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (16)