Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate)

被引:39
|
作者
Lee, Sangmook [1 ]
Lee, Youngjoo
Lee, Jae Wook
机构
[1] Dongduk Womens Univ, Div Appl Chem, Seoul 136714, South Korea
[2] Sogang Univ, Div Biochem Engn, Seoul 121742, South Korea
关键词
poly(lactic acid); poly(butylene adipate-co-terephthalate); biodegradable; blend; ultrasound;
D O I
10.1007/BF03218751
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study investigated the effect of ultrasound irradiation on the blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT). The blends of PLA/PBAT(50/50) (PBAT50) were prepared in a melt mixer with an ultrasonic device attached. Thermal, theological, and mechanical properties, morphology, and biodegradability of the sonicated blends were analysed. The viscosity of the sonicated blends was increased by the ultrasound irradiation owing to the strong interaction. The morphology of the sonicated blends was significantly dependent on the duration of the ultrasound irradiation. For PBAT50, the phase size reduction was maximized when the blends were ultrasonically irradiated for 30 sec. At longer duration of ultrasound irradiation, the PBAT phase underwent flocculation. Measurement of the tensile properties showed an increased breakage tensile stress and an enhanced Young's modulus when the blends were properly irradiated. This improvement was ascribed to better adhesion between the PLA matrix and the PBAT domain and to better dispersion of the PBAT phase. However, the tensile properties were maximized after excessive energy irradiation, which was ascribed to an emulsifying effect leading to coalescence of the PBAT phase. Impact strength was increased to reach a peak with the ultrasound irradiation, and was higher than the untreated sample for all sonicated samples due to the difference of failure mechanism between the tensile test and the impact test.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 50 条
  • [1] Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate)
    Sangmook Lee
    Youngjoo Lee
    Jae Wook Lee
    Macromolecular Research, 2007, 15 : 44 - 50
  • [2] Compatible and Crystallization Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends
    Yeh, Jen-Taut
    Tsou, Chi-Hui
    Huang, Chi-Yuan
    Chen, Kan-Nan
    Wu, Chin-San
    Chai, Wan-Lan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 116 (02) : 680 - 687
  • [3] Preparation of Polymer Blends Between Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) and Biodegradable Polymers as Compatibilizers
    Pivsa-Art, Weraporn
    Chaiyasat, Amorn
    Pivsa-Art, Sommai
    Yamane, Hideki
    Ohara, Hitomi
    10TH ECO-ENERGY AND MATERIALS SCIENCE AND ENGINEERING SYMPOSIUM, 2013, 34 : 549 - 554
  • [4] Properties of Biodegradable Poly (lactic acid)/Poly (butylene adipate-co-terephthalate)/Calcium Carbonate Composites
    Teamsinsungvon, Arpaporn
    Ruksakulpiwat, Yupaporn
    Jarukumjorn, Kasama
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES III, PTS 1 AND 2, 2010, 123-125 : 193 - 196
  • [5] Enzymatic Degradation of Poly(Butylene Adipate-co-Terephthalate)/Poly(Lactic Acid) Blends
    Benninga, Joel
    Lima, Guilherme Macedo R.
    Ersek, Gabor
    Portale, Giuseppe
    Folkersma, Rudy
    Voet, Vincent S. D.
    Loos, Katja
    JOURNAL OF POLYMER SCIENCE, 2024,
  • [6] Properties of Poly (lactic acid) (PLA)/Poly (butylene adipate-co-terephthalate) (PBAT) Blends in the Presence of Antioxidant
    Pukpanta, P.
    Sirisinha, K.
    BIOMATERIALS AND APPLICATIONS, 2012, 506 : 126 - 129
  • [7] Water-Disintegrative and Biodegradable Blends Containing Poly(L-lactic acid) and Poly(butylene adipate-co-terephthalate)
    Oyama, Hideko T.
    Tanaka, Yoshikazu
    Hirai, Sakiko
    Shida, Shigenari
    Kadosaka, Ayako
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2011, 49 (05) : 342 - 354
  • [8] DGEBA-Based Epoxy Resin as Compatibilizer for Biodegradable Poly (lactic acid)/Poly(butylene adipate-co-terephthalate) Blends
    Lopes Pereira, Elaine C.
    Soares, Bluma G.
    Jesus, Rayan B.
    Sirqueira, Alex S.
    MACROMOLECULAR SYMPOSIA, 2018, 381 (01)
  • [9] Isothermal Crystallization and Melting Behaviors of Biodegradable Poly(lactic acid)/Poly(Butylene Adipate-co-terephthalate) Blends Compatibilized by Transesterification
    Wang, Biaobing
    Zhao, Xin
    Wang, Liuyang
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2013, 52 (07) : 718 - 726
  • [10] Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
    Dil, Ebrahim Jalali
    Carreau, P. J.
    Favis, Basil D.
    POLYMER, 2015, 68 : 202 - 212