Comparison and Evaluation of the Combinations of Feature Selection and Classifier on Microarray Data

被引:1
|
作者
Yan, Chaokun [1 ]
Zhang, Jun [1 ]
Kang, Xi [1 ]
Gong, Zhengze [1 ]
Wang, Jianlin [1 ]
Zhang, Ge [1 ]
机构
[1] Henan Univ, Sch Comp & Informat Engn, Kaifeng, Peoples R China
来源
2021 IEEE 6TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (ICBDA 2021) | 2021年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Cancer classification prediction; Microarray data; Data analysis; Feature selection; Classification prediction; ALGORITHM; PREDICTION;
D O I
10.1109/ICBDA51983.2021.9403151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As gene chip technology is widely used in cancer research, a large number of valuable microarray data has been rapidly accumulated. These data have the characteristics of "high-dimensional small samples", in which most genes are unrelated or redundant. For high-dimensional, small-sample, high-noise, and few-sample binary classification datasets, we explore which combination of feature selection method and classifier can achieve the relatively best prediction accuracy, while the number of features included is relatively low. We adopt the standard data analysis procedures: preprocessing the data set, using different feature selection methods to generate feature subsets, and applying different classifiers to predict each feature subset. The results are compared to find out which combination with the relatively high prediction accuracy and the relatively small number of features.
引用
收藏
页码:133 / 137
页数:5
相关论文
共 50 条
  • [21] Robust Feature Selection for Microarray Data Based on Multicriterion Fusion
    Yang, Feng
    Mao, K. Z.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (04) : 1080 - 1092
  • [22] A Discernibility-Based Approach to Feature Selection for Microarray Data
    Voulgaris, Zacharias
    Magoulas, George D.
    2008 4TH INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 818 - 823
  • [23] A novel hybrid feature selection method for microarray data analysis
    Lee, Chien-Pang
    Leu, Yungho
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 208 - 213
  • [24] A hybrid feature selection algorithm for microarray data
    Yuefeng Zheng
    Ying Li
    Gang Wang
    Yupeng Chen
    Qian Xu
    Jiahao Fan
    Xueting Cui
    The Journal of Supercomputing, 2020, 76 : 3494 - 3526
  • [25] A hybrid feature selection algorithm for microarray data
    Zheng, Yuefeng
    Li, Ying
    Wang, Gang
    Chen, Yupeng
    Xu, Qian
    Fan, Jiahao
    Cui, Xueting
    JOURNAL OF SUPERCOMPUTING, 2020, 76 (05) : 3494 - 3526
  • [26] Feature Selection Software Development Using Artificial Bee Colony on DNA Microarray Data
    Andaru, Wildan
    Syarif, Iwan
    Barakbah, Ali Ridho
    2017 INTERNATIONAL ELECTRONICS SYMPOSIUM ON KNOWLEDGE CREATION AND INTELLIGENT COMPUTING (IES-KCIC), 2017, : 6 - 11
  • [27] Partial maximum correlation information: A new feature selection method for microarray data classification
    Yuan, Mingshun
    Yang, Zijiang
    Ji, Guoli
    NEUROCOMPUTING, 2019, 323 : 231 - 243
  • [28] Comparison of Feature Selection Methods for Cross-Laboratory Microarray Analysis
    Liu, Hsi-Che
    Peng, Pei-Chen
    Hsieh, Tzung-Chien
    Yeh, Ting-Chi
    Lin, Chih-Jen
    Chen, Chien-Yu
    Hou, Jen-Yin
    Shih, Lee-Yung
    Liang, Der-Cherng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (03) : 593 - 604
  • [29] Ensemble Feature Selection for Breast Cancer Classification using Microarray Data
    Hengpraprohm, Supoj
    Jungjit, Suwimol
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2020, 23 (65): : 100 - 114
  • [30] Linear regression-based feature selection for microarray data classification
    Hasan, Md Abid
    Hasan, Md Kamrul
    Mottalib, M. Abdul
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2015, 11 (02) : 167 - 179