SLINet: Dysphasia detection in children using deep neural network

被引:6
|
作者
Kaushik, Manoj [1 ]
Baghel, Neeraj [1 ]
Burget, Radim [2 ]
Travieso, Carlos M. [3 ]
Dutta, Malay Kishore [1 ]
机构
[1] Dr APJ Abdul Kalam Tech Univ, Ctr Adv Studies, Lucknow, Uttar Pradesh, India
[2] Brno Univ Technol, Dept Telecommun, Fac Elect Engn, Brno, Czech Republic
[3] Univ Las Palmas Gran Canaria, Inst Technol Dev & Innovat Commun, Las Palmas Gran Canaria, Spain
关键词
Developmental dysphasia; Envelop modulation spectra; Diagnosis; LANGUAGE IMPAIRMENT; SPEAKING CHILDREN;
D O I
10.1016/j.bspc.2021.102798
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A child has specific language impairment (SLI) or developmental dysphasia (DD) when the speech is delayed or has disordered language development for no apparent reason. As it may be related to loss of hearing, speech abnormality should be diagnosed at an early stage. The existing methods are mainly based on the utterance of vowels and have a high misclassification rate. This article proposes an automatic deep learning model that can be an effective tool to diagnose SLI at the early stage. In the proposed work, raw audio data is processed using Shorttime Fourier transform and converted to decibel (dB) scaled spectrograms which are classified using the proposed convolutional neural network (CNN). This approach consists of utterances that contained seven types of vocabulary (vowels, consonant and different syllable Isolated words). A rigorous analysis based on different agegroup was performed and a 10-fold Cross-Validation (CV) was done to test the accuracy of the classifier. A comprehensive experimental test reveals that 99.09 % of the children are correctly diagnosed by the proposed framework, which is superior when compared to state-of-the-art methods. The proposed scheme is gender and speaker-independent. The proposed model can be used as a stand-alone diagnostic tool that can assist automatic diagnosis of children for SLI and will be helpful for remote areas where professionals are not available. The proposed model is robust, efficient with low time complexity which is suitable for real-time applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] An Advanced Facial Expression Detection using Deep Neural Network
    Hans, Arnold Sachith A.
    Bansal, Mohit
    Rao, Smitha
    2021 8TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS (ICSCC), 2021, : 204 - 208
  • [42] Detection of Driver Fatigue State using Deep Neural Network
    Anwar, Noreen
    Xiong, Gang
    Guo, Miao
    Ye, Peijun
    Ali, Hub
    Wei, Qinglai
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 79 - 84
  • [43] Lung nodule Detection and Classification using Deep Neural Network
    Ullah, Ibrahim
    Kuri, Saumitra Kumar
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1062 - 1065
  • [44] Fabric Defect Detection Using Deep Convolutional Neural Network
    Maheshwari S. Biradar
    B. G. Shiparamatti
    P. M. Patil
    Optical Memory and Neural Networks, 2021, 30 : 250 - 256
  • [45] Effective image splicing detection using deep neural network
    Priyadharsini, S.
    Devi, K. Kamala
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (02)
  • [46] Fabric Defect Detection Using Deep Convolution Neural Network
    Fan, Junjun
    Wong, Wai Keung
    Wen, Jiajun
    Gao, Can
    Mo, Dongmei
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 (1_SUPPL) : 144 - 151
  • [47] Smart Vessel Detection using Deep Convolutional Neural Network
    Joseph, Iwin Thanakumar S.
    Sasikala, J.
    Juliet, Sujitha D.
    Raj, Benson Edwin S.
    2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, 2018, : 28 - 32
  • [48] Fabric Defect Detection Using Deep Convolutional Neural Network
    Biradar, Maheshwari S.
    Shiparamatti, B.G.
    Patil, P.M.
    Optical Memory and Neural Networks (Information Optics), 2021, 30 (03): : 250 - 256
  • [49] Automatic Detection of Welding Defects using Deep Neural Network
    Hou, Wenhui
    Wei, Ye
    Guo, Jie
    Jin, Yi
    Zhu, Chang'an
    10TH INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING, 2018, 933
  • [50] DEEP: Detection of Environmental Pollution Using Cooperative Neural Network
    Zhang, Yang
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL III: SYSTEMS, 2020, 517 : 10 - 17