Applying the Theory of Numerical Radius of Operators to Obtain Multi-observable Quantum Uncertainty Relations

被引:2
作者
He, Kan [1 ,2 ]
Hou, Jin Chuan [1 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Informat & Comp Sci, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical radius of operators; quantum uncertainty principle; quantum observables; quantum deviations; PRINCIPLE;
D O I
10.1007/s10114-022-1474-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantum uncertainty relations are mathematical inequalities that describe the lower bound of products of standard deviations of observables (i.e., bounded or unbounded self-adjoint operators). By revealing a connection between standard deviations of quantum observables and numerical radius of operators, we establish a universal uncertainty relation for k observables, of which the formulation depends on the even or odd quality of k. This universal uncertainty relation is tight at least for the cases k = 2 and k = 3. For two observables, the uncertainty relation is a simpler reformulation of Schrodinger's uncertainty principle, which is also tighter than Heisenberg's and Robertson's uncertainty relations.
引用
收藏
页码:1241 / 1254
页数:14
相关论文
共 26 条
  • [1] [Anonymous], 1930, Die Physikalischen Prinzipien der Quantentheorie
  • [2] Bengtsson I., 2017, GEOMETRY QUANTUM STA, V2nd
  • [3] The uncertainty principle in the presence of quantum memory
    Berta, Mario
    Christandl, Matthias
    Colbeck, Roger
    Renes, Joseph M.
    Renner, Renato
    [J]. NATURE PHYSICS, 2010, 6 (09) : 659 - 662
  • [4] Variance-based uncertainty relations for incompatible observables
    Chen, Bin
    Cao, Ning-Ping
    Fei, Shao-Ming
    Long, Gui-Lu
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (09) : 3909 - 3917
  • [5] State-independent uncertainty relations
    de Guise, Hubert
    Maccone, Lorenzo
    Sanders, Barry C.
    Shukla, Namrata
    [J]. PHYSICAL REVIEW A, 2018, 98 (04)
  • [6] UNCERTAINTY IN QUANTUM MEASUREMENTS
    DEUTSCH, D
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (09) : 631 - 633
  • [7] Universal Uncertainty Relations
    Friedland, Shmuel
    Gheorghiu, Vlad
    Gour, Gilad
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (23)
  • [8] Schrodinger uncertainty relation with Wigner-Yanase skew information
    Furuichi, Shigeru
    [J]. PHYSICAL REVIEW A, 2010, 82 (03):
  • [9] Halmos P R., 1982, HILBERT SPACE PROBLE, DOI [10.1007/978-1-4684-9330-6, DOI 10.1007/978-1-4684-9330-6]
  • [10] Heisenberg W., 1927, Z PHYS, V43, P172, DOI DOI 10.1007/BF01397280