Some recent methods for partial differential equations of divergence form

被引:5
作者
Chen, GQ [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2003年 / 34卷 / 01期
基金
美国国家科学基金会;
关键词
partial differential equations; divergence form; hyperbolic conservation laws; degenerate parabolic-hyperbolic equations; mixed elliptic-hyperbolic type; entropy methods; kinetic methods; free boundary methods; divergence-measure fields; kinetic formulations; free boundary iterations; compensated compactness; test function methods;
D O I
10.1007/s00574-003-0005-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some recent methods for solving second-order nonlinear partial differential equations of divergence form and related nonlinear problems are surveyed. These methods include entropy methods via the theory of divergence-measure fields for hyperbolic conservation laws, kinetic methods via kinetic formulations for degenerate parabolic-hyperbolic equations, and free-boundary methods via free-boundary iterations for multidimensional transonic shocks for nonlinear equation of mixed elliptic-hyperbolic type. Some recent trends in this direction are also discussed.
引用
收藏
页码:107 / 144
页数:38
相关论文
共 183 条
[11]  
[Anonymous], EQUATIONS MIXED TYPE
[12]  
[Anonymous], 1992, LECT NOTES MEASURE T
[13]  
[Anonymous], 2001, CAMBRIDGE TRACTS MAT
[14]  
[Anonymous], 1980, CHINESE ANN MATH B
[15]  
[Anonymous], VANISHING VISCOSITY
[16]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
[17]  
Arnold V. I., 1998, TOPOLOGICAL METHODS
[18]  
BAIOCCHI C, 1984, VARIATIONAL QUASI VA, V1
[19]  
Bardos C., 1979, COMMUN PART DIFF EQ, V4, P1017, DOI DOI 10.1080/03605307908820117
[20]  
Berestycki H, 1997, COMMUN PUR APPL MATH, V50, P1089, DOI 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO