Some recent methods for partial differential equations of divergence form

被引:5
作者
Chen, GQ [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2003年 / 34卷 / 01期
基金
美国国家科学基金会;
关键词
partial differential equations; divergence form; hyperbolic conservation laws; degenerate parabolic-hyperbolic equations; mixed elliptic-hyperbolic type; entropy methods; kinetic methods; free boundary methods; divergence-measure fields; kinetic formulations; free boundary iterations; compensated compactness; test function methods;
D O I
10.1007/s00574-003-0005-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some recent methods for solving second-order nonlinear partial differential equations of divergence form and related nonlinear problems are surveyed. These methods include entropy methods via the theory of divergence-measure fields for hyperbolic conservation laws, kinetic methods via kinetic formulations for degenerate parabolic-hyperbolic equations, and free-boundary methods via free-boundary iterations for multidimensional transonic shocks for nonlinear equation of mixed elliptic-hyperbolic type. Some recent trends in this direction are also discussed.
引用
收藏
页码:107 / 144
页数:38
相关论文
共 183 条
[1]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[2]   COMPRESSIBLE FLOWS OF JETS AND CAVITIES [J].
ALT, HW ;
CAFFARELLI, LA ;
FRIEDMAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (01) :82-141
[3]  
Alt HW., 1984, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V11, P1
[4]  
anic S., 2000, METHODS APPL ANAL, V7, P313, DOI DOI 10.4310/MAA.2000.V7.N2.A4
[5]  
[Anonymous], TRANSL MATH MONOGRAP
[6]  
[Anonymous], 1983, MEM AM MATH SOC
[7]  
[Anonymous], EULER POISSON DARBOU
[8]  
[Anonymous], 1989, ANN SCUOLA NORM-SCI
[9]  
[Anonymous], MEM AM MATH SOC
[10]  
[Anonymous], 1984, APPL MATH SCI