Identifying Genetic Risk Factors for Alzheimer's Disease via Shared Tree-Guided Feature Learning Across Multiple Tasks

被引:5
作者
Zhang, Weizhong [1 ,2 ]
Luo, Tingjin [3 ,4 ]
Qiu, Shuang [3 ]
Ye, Jieping [3 ]
Cai, Deng [1 ]
He, Xiaofei [1 ]
Wang, Jie [5 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, State Key Lab CAD&CG, 388 Yuhang Tang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Tencent AI Lab, Shenzhen 518057, Peoples R China
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[4] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[5] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, 96 JinZhai Rd, Hefei 230026, Anhui, Peoples R China
关键词
Tree-structured group Lasso; multi-task learning; Alzheimer's disease; genome-wide association studies; screening; WHOLE-GENOME ASSOCIATION; PARKINSON DISEASE; WIDE ASSOCIATION; GENOTYPE; LOCI; MRI; SEQUENCE; APOE;
D O I
10.1109/TKDE.2018.2816029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The genome-wide association study (GWAS) is a popular approach to identify disease-associated genetic factors for Alzhemer's Disease (AD). However, it remains challenging because of the small number of samples, very high feature dimensionality and complex structures. To accurately identify genetic risk factors for AD, we propose a novel method based on an in-depth exploration of the hierarchical structure among the features and the commonality across related tasks. Specifically, we first extract and encode the tree hierarchy among features; then, we integrate the tree structures with multi-task feature learning (MTFL) to learn the shared features-that are predictive of AD-among related tasks simultaneously. Thus, we can unify the strength of both the prior structure information and MTFL to boost the prediction performance. However, due to the highly complex regularizer that encodes the tree structure and the extremely high feature dimensionality, the learning process can be computationally prohibitive. To address this, we further develop a novel safe screening rule to quickly identify and remove the irrelevant features before training. Experiment results demonstrate that the proposed approach significantly outperforms the state-of-the-art in detecting genetic risk factors of AD and the speedup gained by the proposed screening can be several orders of magnitude.
引用
收藏
页码:2145 / 2156
页数:12
相关论文
共 44 条
[1]  
[Anonymous], 2007, Multi-Task Feature Learning, DOI DOI 10.7551/MITPRESS/7503.003.0010
[2]  
[Anonymous], 2010, ICML
[3]   Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database [J].
Bertram, Lars ;
McQueen, Matthew B. ;
Mullin, Kristina ;
Blacker, Deborah ;
Tanzi, Rudolph E. .
NATURE GENETICS, 2007, 39 (01) :17-23
[4]  
Chen JH, 2009, 2009 INTERNATIONAL ASIA SYMPOSIUM ON INTELLIGENT INTERACTION AND AFFECTIVE COMPUTING, P137, DOI [10.1109/ASIA.2009.22, 10.1049/cp.2009.1294]
[5]   A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer's disease [J].
Coon, Keith D. ;
Myers, Amanda J. ;
Craig, David W. ;
Webster, Jennifer A. ;
Pearson, John V. ;
Lince, Diane Hu ;
Zismann, Victoria L. ;
Beach, Thomas G. ;
Leung, Doris ;
Bryden, Leslie ;
Halperin, Rebecca F. ;
Marlowe, Lauren ;
Kaleem, Mona ;
Walker, Douglas G. ;
Ravid, Rivka ;
Heward, Christopher B. ;
Rogers, Joseph ;
Papassotiropoulos, Andreas ;
Reiman, Eric M. ;
Hardy, John ;
Stephan, Dietrich A. .
JOURNAL OF CLINICAL PSYCHIATRY, 2007, 68 (04) :613-618
[6]  
El Ghaoui L, 2012, PAC J OPTIM, V8, P667
[7]  
Evgeniou T, 2005, J MACH LEARN RES, V6, P615
[8]   Sure independence screening for ultrahigh dimensional feature space [J].
Fan, Jianqing ;
Lv, Jinchi .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :849-883
[9]   Loss-of-function mutations in SLC30A8 protect against type 2 diabetes [J].
Flannick, Jason ;
Thorleifsson, Gudmar ;
Beer, Nicola L. ;
Jacobs, Suzanne B. R. ;
Grarup, Niels ;
Burtt, Noel P. ;
Mahajan, Anubha ;
Fuchsberger, Christian ;
Atzmon, Gil ;
Benediktsson, Rafn ;
Blangero, John ;
Bowden, Don W. ;
Brandslund, Ivan ;
Brosnan, Julia ;
Burslem, Frank ;
Chambers, John ;
Cho, Yoon Shin ;
Christensen, Cramer ;
Douglas, Desiree A. ;
Duggirala, Ravindranath ;
Dymek, Zachary ;
Farjoun, Yossi ;
Fennell, Timothy ;
Fontanillas, Pierre ;
Forsen, Tom ;
Gabriel, Stacey ;
Glaser, Benjamin ;
Gudbjartsson, Daniel F. ;
Hanis, Craig ;
Hansen, Torben ;
Hreidarsson, Astradur B. ;
Hveem, Kristian ;
Ingelsson, Erik ;
Isomaa, Bo ;
Johansson, Stefan ;
Jorgensen, Torben ;
Jorgensen, Marit Eika ;
Kathiresan, Sekar ;
Kong, Augustine ;
Kooner, Jaspal ;
Kravic, Jasmina ;
Laakso, Markku ;
Lee, Jong-Young ;
Lind, Lars ;
Lindgren, Cecilia M. ;
Linneberg, Allan ;
Masson, Gisli ;
Meitinger, Thomas ;
Mohlke, Karen L. ;
Molven, Anders .
NATURE GENETICS, 2014, 46 (04) :357-+
[10]   The clinical use of structural MRI in Alzheimer disease [J].
Frisoni, Giovanni B. ;
Fox, Nick C. ;
Jack, Clifford R., Jr. ;
Scheltens, Philip ;
Thompson, Paul M. .
NATURE REVIEWS NEUROLOGY, 2010, 6 (02) :67-77