Stability of time-stepping methods for abstract time-dependent parabolic problems

被引:21
作者
Gonzalez, C [1 ]
Palencia, C
机构
[1] Univ Valladolid, Dept Matemat Alicada & Computac, Valladolid, Spain
[2] Fac Ciencies, Dept Matemat Aplicada & Computac, Valladolid 47005, Spain
关键词
time-dependent; parabolic; analytic semigroups; resolvent; sectorial; Banach spaces; maximum norm; stability; Runge-Kutta methods; multistep methods; variable step-size;
D O I
10.1137/S0036142995283412
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an abstract nonautonomous parabolic problem, u'(t)=A(t)u(t); u(t(0))=u(0); where A(t) : D-t subset of X --> X, t(0) less than or equal to t less than or equal to t(1), is a family of sectorial operators in a Banach space X. This problem is discretized in time by means of either an A(theta)-stable Runge-Kutta or an A(theta)-stable linear multistep method. We prove that the resulting discretization is stable, under some natural assumptions on the relative total variation of A(t) with respect to t. For strongly A(theta)-stable Runge-Kutta methods, stability holds even for variable time step-sizes. Our results are applicable to the analysis of time-dependent parabolic problems in the L-p norms.
引用
收藏
页码:973 / 989
页数:17
相关论文
共 27 条
[1]  
ACQUISTAPACE P, 1993, LECT NOTES PURE APPL, V148, P1
[2]   STABILITY OF RUNGE-KUTTA METHODS FOR STIFF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ALEXANDER, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :1147-1168
[3]  
Alibekov Kh. A., 1979, UKRAIN MATH ZH, V31, P627
[4]  
AMANN H, 1986, T AM MATH SOC, V293, P191
[5]  
BAKAYEV NY, 1993, COMP MATH MATH PHYS+, V33, P511
[6]  
BECKER J, 1993, 03 CHALM U TECHN U G
[7]   A STUDY OF B-CONVERGENCE OF RUNGE-KUTTA METHODS [J].
BURRAGE, K ;
HUNDSDORFER, WH ;
VERWER, JG .
COMPUTING, 1986, 36 (1-2) :17-34
[8]   THE STABILITY OF RATIONAL-APPROXIMATIONS OF ANALYTIC SEMIGROUPS [J].
CROUZEIX, M ;
LARSSON, S ;
PISKAREV, S ;
THOMEE, V .
BIT, 1993, 33 (01) :74-84
[9]  
CROUZEIX M, 1994, MATH COMPUT, V63, P121, DOI 10.1090/S0025-5718-1994-1242058-1
[10]  
Grigorieff R.D., 1991, Teubner-Texte Math., V121, P204