Classification of People who Suffer Schizophrenia and Healthy People by EEG Signals using Deep Learning

被引:1
|
作者
Torres Naira, Carlos Alberto [1 ]
Lopez Del Alamo, Cristian Jose [2 ]
机构
[1] Univ Nacl San Agustin Arequipa, Escuela Profes Ingn Sistemas, Arequipa, Peru
[2] Univ Nacl San Agustin Arequipa, Escuela Profes Ciencia Comp, Arequipa, Peru
关键词
Convolutional Neural Network (CNN); electroencephalography; Electroencephalogram Signals (EEG); deep learning; schizophrenia; classification; Pearson Correlation Coefficient (PCC); Universidad Nacional de San Agustin (UNSA); NETWORKS;
D O I
10.14569/ijacsa.2019.0101067
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
More than 21 million people worldwide suffer from schizophrenia. This serious mental disorder exposes people to stigmatization, discrimination, and violation of their human rights. Different works on classification and diagnosis of mental illnesses use electroencephalogram signals (EEG) because it reflects brain functioning, and how these diseases affect it. Due to the information provided by the EEG signals and the performance demonstrated by Deep Learning algorithms, the present work proposes a model for the classification of schizophrenic and healthy people through EEG signals using Deep Learning methods. Considering the properties of an EEG, high-dimensional and multichannel, we applied the Pearson Correlation Coefficient (PCC) to represent the relations between the channels, this way instead of using the large amount of data that an EEG provides, we used a shorter matrix as an input of a Convolutional Neural Network (CNN). Finally, results demonstrated that the proposed EEG-based classification model achieved Accuracy, Specificity, and Sensitivity of 90%, 90%, and 90%, respectively.
引用
收藏
页码:511 / 516
页数:6
相关论文
共 50 条
  • [1] A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals
    Aslan, Zulfikar
    Akin, Mehmet
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2022, 45 (01) : 83 - 96
  • [2] Inner Speech Classification using EEG Signals: A Deep Learning Approach
    Van den Berg, Bram
    Van Donkelaar, Sander
    Alimardani, Maryam
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON HUMAN-MACHINE SYSTEMS (ICHMS), 2021, : 258 - 261
  • [3] Classification of motor imagery EEG signals using deep learning
    Rahma, Boungab
    Aicha, Reffad
    Kamel, Mebarkia
    PROGRAM OF THE 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND AUTOMATIC CONTROL, ICEEAC 2024, 2024,
  • [4] Classification of Alcoholic EEG Signals Using a Deep Learning Method
    Farsi, Leila
    Siuly, Siuly
    Kabir, Enamul
    Wang, Hua
    IEEE SENSORS JOURNAL, 2021, 21 (03) : 3552 - 3560
  • [5] A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals
    Zülfikar Aslan
    Mehmet Akin
    Physical and Engineering Sciences in Medicine, 2022, 45 : 83 - 96
  • [6] Recognition of EEG Signals from Imagined Vowels Using Deep Learning Methods
    Sarmiento, Luis Carlos
    Villamizar, Sergio
    Lopez, Omar
    Collazos, Ana Claros
    Sarmiento, Jhon
    Rodriguez, Jan Bacca
    SENSORS, 2021, 21 (19)
  • [7] An Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signals
    Vazquez, Manuel A.
    Maghsoudi, Arash
    Marino, Ines P.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2021, 15
  • [8] Ensemble deep learning for automated visual classification using EEG signals
    Zheng, Xiao
    Chen, Wanzhong
    You, Yang
    Jiang, Yun
    Li, Mingyang
    Zhang, Tao
    PATTERN RECOGNITION, 2020, 102
  • [9] Classification of Alzheimer's dementia EEG signals using deep learning
    Sen, Sena Yagmur
    Cura, Ozlem Karabiber
    Yilmaz, Gulce Cosku
    Akan, Aydin
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2025, 47 (07) : 1353 - 1365
  • [10] Emotion recognition in EEG signals using deep learning methods: A review
    Jafari, Mahboobeh
    Shoeibi, Afshin
    Khodatars, Marjane
    Bagherzadeh, Sara
    Shalbaf, Ahmad
    Garcia, David Lopez
    Gorriz, Juan M.
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165