Free Boundary Regularity in the Parabolic Fractional Obstacle Problem

被引:25
作者
Barrios, Begona [1 ]
Figalli, Alessio [2 ,3 ]
Ros-Oton, Xavier [4 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38271, Spain
[2] Univ Texas Austin, Austin, TX 78712 USA
[3] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[4] Univ Texas Austin, Dept Math, 2515 Speedway, Austin, TX 78751 USA
基金
美国国家科学基金会;
关键词
LAPLACIAN; OPTION;
D O I
10.1002/cpa.21745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The parabolic obstacle problem for the fractional Laplacian naturally arises in American option models when the asset prices are driven by pure-jump Levy processes. In this paper we study the regularity of the free boundary. Our main result establishes that, when s > 1/2, the free boundary is a C-1,C- graph in x and t near any regular free boundary point (x0,t0) is an element of partial derivative{u > phi}. Furthermore, we also prove that solutions u are C1+s in x and t near such points, with a precise expansion of the form u(x,t)-phi(x)=c(0)((x-x(0))center dot e+kappa(t-t(0)))(+)(1+s) + o(vertical bar x-x(0)vertical bar(1+s+alpha) + vertical bar t-t(0)vertical bar(1+s+alpha)), with c(0) > 0,e is an element of Sn-1, and a > 0. (c) 2018 Wiley Periodicals, Inc.
引用
收藏
页码:2129 / 2159
页数:31
相关论文
共 21 条
[1]  
[Anonymous], 1969, TEOR VEROJATNOST PRI
[2]  
Athanasopoulos I., 2016, ARXIV160101516MATHAP
[3]  
Barrios B., AM J MATH
[4]   REGULARITY OF FREE BOUNDARIES IN HIGHER DIMENSIONS [J].
CAFFARELLI, LA .
ACTA MATHEMATICA, 1977, 139 (3-4) :155-184
[5]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[6]   Obstacle problems for integro-differential operators: regularity of solutions and free boundaries [J].
Caffarelli, Luis ;
Ros-Oton, Xavier ;
Serra, Joaquim .
INVENTIONES MATHEMATICAE, 2017, 208 (03) :1155-1211
[7]   Regularity of solutions to the parabolic fractional obstacle problem [J].
Caffarelli, Luis ;
Figalli, Alessio .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 680 :191-233
[8]   Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Salsa, Sandro ;
Silvestre, Luis .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :425-461
[9]   Holder estimates for non-local parabolic equations with critical drift [J].
Chang-Lara, Hector A. ;
Davila, Gonzalo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) :4237-4284
[10]  
Cont R., 2004, Financial Modelling with Jump Processes