Machine-Learning Assisted Outdoor Localization via Sector-based Fog Massive MIMO

被引:0
作者
Pirzadeh, Hessam [1 ]
Wang, Chenwei [2 ]
Papadopoulos, Haralabos [2 ]
机构
[1] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA
[2] DOCOMO Innovat Inc, Palo Alto, CA USA
来源
ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC) | 2019年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gains in area spectral efficiency have been recently demonstrated in networks of large-antenna arrays by means of fog massive MIMO operation and virtual sector-based processing. In this paper, we adopt such sector-based processing and operation to localize users in the network. We investigate the viability of some widely used supervised-learning methods in estimating user locations by observing across the fog massive MIMO network signals transmitted by the users. In particular, we evaluate linear regression (LR), weighted K-nearest neighbors (WKNN), and neural networks (NN) in the context of a network of massive-antenna remote-radio heads (RRHs) using simulations based on a spatially consistent channel model. As our simulations reveal, NN-based location estimators trained with user-sector channel gains could be a viable approach for providing user location information at the network side.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Accurate estimation of polyethylene glycol density via machine-learning based techniques [J].
Altalbawy, Farag M. A. ;
Alalaq, Iman Samir ;
Ibrahim, Safaa Mohammed ;
Vaghela, Krunal ;
Jaharadak, Adam Amril ;
Singh, Priyanka ;
Kaur, Kiranjeet ;
Alsultany, Forat H. ;
Hameed, Safaa Mustafa ;
Altimari, Usama S. ;
Al-Farouni, Mohammed ;
Kiani, Mahmood .
BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2025, 46 (04) :429-440
[32]   Machine-Learning Assisted Handwriting Recognition Using Graphene Oxide-Based Hydrogel [J].
Lu, Ying ;
Zhou, Fengling ;
Zhou, Jian ;
Kuang, Linjuan ;
Tan, Kaitao ;
Lu, Haibao ;
Cai, Jianbing ;
Guo, Yihao ;
Cao, Rongtao ;
Fu, YongQing ;
Duan, Huigao .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (48) :54276-54286
[33]   Throughput Based Adaptive Beamforming in 5G Millimeter Wave Massive MIMO Cellular Networks via Machine Learning [J].
Lavdas, Spyros ;
Gkonis, Panagiotis ;
Zinonos, Zinon ;
Trakadas, Panagiotis ;
Sarakis, Lambros .
2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
[34]   Machine-Learning Assisted Digital Predistortion Using Feedback via Dual-Polarized Antenna Arrays [J].
Aoki, Yuuichi ;
Kim, Yonghoon ;
Kang, Heedo ;
Kim, Wonki ;
Min, Kihong ;
Yang, Sung-Gi .
2024 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, IMS 2024, 2024, :729-732
[35]   mRNALoc: a novel machine-learning based in-silico tool to predict mRNA subcellular localization [J].
Garg, Anjali ;
Singhal, Neelja ;
Kumar, Ravindra ;
Kumar, Manish .
NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) :W239-W243
[36]   Channel Estimation in RIS-assisted Downlink Massive MIMO: A Learning-Based Approach [J].
Vu, Tung T. ;
Trinh Van Chien ;
Dinh, Canh T. ;
Hien Quoc Ngo ;
Matthaiou, Michail .
2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
[37]   Joint Machine Learning based Resource Allocation and Hybrid Beamforming Design for Massive MIMO Systems [J].
Ahmed, Irfan ;
Khammari, Hedi .
2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
[38]   Machine Learning-based Hybrid Precoding with Robust Error for UAV mmWave Massive MIMO [J].
Ren, Huan ;
Li, Lixin ;
Xu, Wenjun ;
Chen, Wei ;
Han, Zhu .
ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
[39]   Knowledge-Driven Machine Learning-based Channel Estimation in Massive MIMO System [J].
Li, Daofeng ;
Xu, YaMei ;
Zhao, Ming ;
Zhang, Sihai ;
Zhu, Jinkang .
2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2021,
[40]   Extreme Learning Machine-Based Receiver for Multi-User Massive MIMO Systems [J].
Fernando Carrera, Diego ;
Zabala-Blanco, David ;
Vargas-Rosales, Cesar ;
Azurdia-Meza, Cesar A. .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (02) :484-488