An Efficient Clustering Algorithm for Multivariate Time Series

被引:0
作者
Zhou, Da-Zhuo [1 ]
Zhang, Bo [1 ]
机构
[1] Hebei Univ Econ & Trade, Ctr Comp, Shijiazhuang, Peoples R China
来源
EBM 2010: INTERNATIONAL CONFERENCE ON ENGINEERING AND BUSINESS MANAGEMENT, VOLS 1-8 | 2010年
关键词
Multivariate Time Series; Similarity Search; Locally Linear Embedding;
D O I
暂无
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
A nonlinear method to similarity search of similarity search is presented. In order to efficiently perform similarity search for multivariate time series datasets with the Eros similarity measure, this algorithm allows the MTS items to be indexed by using a R-tree structure. Theoretic analysis and experimental results show that algorithm is effective and efficient.
引用
收藏
页码:5190 / 5193
页数:4
相关论文
共 5 条
[1]  
Ding C., 2004, SAC '04: Proceedings of the 2004 ACM symposium on Applied computing, P584, DOI [10.1145/967900.968021, DOI 10.1145/967900.968021]
[2]  
HAN JW, 2000, MICHELINE DATA MININ
[3]   Nonlinear dimensionality reduction by locally linear embedding [J].
Roweis, ST ;
Saul, LK .
SCIENCE, 2000, 290 (5500) :2323-+
[4]  
Wang WL, 1997, ELEC SOC S, V97, P186
[5]  
YANG K, 2007, EFFICIENT K NEAREST, P65