Vibration-based gearbox fault diagnosis using deep neural networks

被引:23
作者
Chen, Zhiqiang [1 ,2 ]
Chen, Xudong [1 ,2 ]
Li, Chuan [1 ,2 ]
Sanchez, Rene-Vinicio [3 ]
Qin, Huafeng [1 ,2 ]
机构
[1] Chongqing Technol & Business Univ, Natl Res Base Intelligent Mfg Serv, Chongqing, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Engn Lab Detect Control & Integrated Sy, Chongqing, Peoples R China
[3] Univ Politecn Salesiana, Dept Mech Engn, Cuenca, Ecuador
基金
中国国家自然科学基金;
关键词
deep learning; neural network; gearbox; fault diagnosis; vibration signal; FAILURE;
D O I
10.21595/jve.2016.17267
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Vibration-based analysis is the most commonly used technique to monitor the condition of gearboxes. Accurate classification of these vibration signals collected from gearbox is helpful for the gearbox fault diagnosis. In recent years, deep neural networks are becoming a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. In this paper, a study of deep neural networks for fault diagnosis in gearbox is presented. Four classic deep neural networks (Auto-encoders, Restricted Boltzmann Machines, Deep Boltzmann Machines and Deep Belief Networks) are employed as the classifier to classify and identify the fault conditions of gearbox. To sufficiently validate the deep neural networks diagnosis system is highly effective and reliable, herein three types of data sets based on the health condition of two rotating mechanical systems are prepared and tested. Each signal obtained includes the information of several basic gear or bearing faults. Totally 62 data sets are used to test and train the proposed gearbox diagnosis systems. Corresponding to each vibration signal, 256 features from both time and frequency domain are selected as input parameters for deep neural networks. The accuracy achieved indicates that the presented deep neural networks are highly reliable and effective in fault diagnosis of gearbox.
引用
收藏
页码:2475 / 2496
页数:22
相关论文
共 33 条
[1]  
Abu-Mahfouz I., 2009, INT J GEN SYST, V34, P261
[2]  
[Anonymous], 2006, NIPS
[3]  
[Anonymous], 2009, P INT C ART INT STAT
[4]  
[Anonymous], 2009, Deep boltzmann machines
[5]   Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals [J].
Ben Ali, Jaouher ;
Fnaiech, Nader ;
Saidi, Lotfi ;
Chebel-Morello, Brigitte ;
Fnaiech, Farhat .
APPLIED ACOUSTICS, 2015, 89 :16-27
[6]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[7]   AUTO-ASSOCIATION BY MULTILAYER PERCEPTRONS AND SINGULAR VALUE DECOMPOSITION [J].
BOURLARD, H ;
KAMP, Y .
BIOLOGICAL CYBERNETICS, 1988, 59 (4-5) :291-294
[8]   Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal [J].
Cerrada, Mariela ;
Vinicio Sanchez, Rene ;
Cabrera, Diego ;
Zurita, Grover ;
Li, Chuan .
SENSORS, 2015, 15 (09) :23903-23926
[9]  
Chang C. C., 2013, ACM T INTELLIGENT SY
[10]   A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm [J].
Chen, Fafa ;
Tang, Baoping ;
Chen, Renxiang .
MEASUREMENT, 2013, 46 (01) :220-232