PERIODIC SOLUTIONS FOR SOME NONLINEAR PARTIAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

被引:6
作者
Benkhalti, Rachid [1 ]
Elazzouzi, Abdelhai [2 ]
Ezzinbi, Khalil [2 ]
机构
[1] Pacific Lutheran Univ, Dept Math, Tacoma, WA 98447 USA
[2] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Math, Marrakech, Morocco
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2010年 / 20卷 / 02期
关键词
Hille-Yosida condition; partial neutral functional equations; multivalued maps; condensing maps; periodic solutions; HOPF-BIFURCATION;
D O I
10.1142/S0218127410025600
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the existence of periodic solutions for some nonlinear partial functional differential equation of neutral type. We assume that the linear part is nondensely defined and satisfies the Hille-Yosida condition. The delayed part is assumed to be omega-periodic with respect to the first argument. Using a fixed point theorem for multivalued mapping, some sufficient conditions are given to prove the existence of periodic solutions.
引用
收藏
页码:545 / 555
页数:11
相关论文
共 24 条
[1]  
ADIMY A, 1999, DIFF EQS DYN SYST, V7, P371
[2]   A class of linear partial neutral functional differential equations with nondense domain [J].
Adimy, M ;
Ezzinbi, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 147 (02) :285-332
[3]   Strict solutions of nonlinear hyperbolic neutral differential equations [J].
Adimy, M ;
Ezzinbi, K .
APPLIED MATHEMATICS LETTERS, 1999, 12 (01) :107-112
[4]  
Adimy M., 2004, HIROSHIMA MATH J, V34
[5]   Existence of a periodic solution for some partial functional differential equations with infinite delay [J].
Benkhalti, R ;
Bouzahir, H ;
Ezzinbi, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (01) :257-280
[6]  
BENKHALTI R, 2000, DYN SYST APPL, V11, P231
[7]  
Benkhalti R., 2006, ELECTRON J DIFFER EQ, V56, P1
[8]  
Burton T., 1985, STABILITY PERIODIC S, P197
[9]  
Chow S.N., 1974, Funkc. Ekvacioj, V17, P31
[10]  
Da Prato G., 1987, ANN SCUOLA NORM SU S, V14, P285