FastPGA: A dynamic population sizing approach for solving expensive multiobjective optimization problems

被引:0
作者
Eskandari, Hamidreza [1 ]
Geiger, Christopher D. [1 ]
Lamont, Gary B. [2 ]
机构
[1] Univ Cent Florida, Dept Ind Engn & Management Syst, 4000 Cent Florida Blvd, Orlando, FL 32816 USA
[2] Air Force Inst Technol, Grad Schl Engn & Management, Dept Elect & Comp Engn, Wright Patterson AFB, OH 45433 USA
来源
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS | 2007年 / 4403卷
关键词
multiobjective optimization; evolutionary algorithms; Pareto optimality; fast convergence;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a new multiobjective evolutionary algorithm (MOEA), called fast Pareto genetic algorithm (FastPGA). FastPGA uses a new fitness assignment and ranking strategy for the simultaneous optimization of multiple objectives where each solution evaluation is computationally- and/or financially-expensive. This is often the case when there are time or resource constraints involved in finding a solution. A population regulation operator is introduced to dynamically adapt the population size as needed up to a user-specified maximum population size. Computational results for a number of well-known test problems indicate that FastPGA is a promising approach. FastPGA outperforms the improved nondominated sorting genetic algorithm (NSGA-II) within a relatively small number of solution evaluations.
引用
收藏
页码:141 / +
页数:3
相关论文
共 50 条
  • [21] Designing a Framework for Solving Multiobjective Simulation Optimization Problems
    Chang, Tyler H.
    Wild, Stefan M.
    INFORMS JOURNAL ON COMPUTING, 2025,
  • [22] SOLVING MULTIOBJECTIVE MIXED INTEGER CONVEX OPTIMIZATION PROBLEMS
    De Santis, Marianna
    Eichfelder, Gabriele
    Niebling, Julia
    Rocktaeschel, Stefan
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) : 3122 - 3145
  • [23] Multiobjective Tree-structured Parzen Estimator for Computationally Expensive Optimization Problems
    Ozaki, Yoshihiko
    Tanigaki, Yuki
    Watanabe, Shuhei
    Onishi, Masaki
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 533 - 541
  • [24] Solving multiobjective optimization problems using an artificial immune system
    Coello C.A.C.
    Cortés N.C.
    Genetic Programming and Evolvable Machines, 2005, 6 (2) : 163 - 190
  • [25] Multiobjective optimization algorithm for solving constrained single objective problems
    Reynoso-Meza, Gilberto
    Blasco, Xavier
    Sanchis, Javier
    Martinez, Miguel
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [26] Fast multiobjective immune optimization approach solving multiobjective interval number programming
    Zhang, Zhuhong
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 51
  • [28] Modified Brain Storm Optimization Algorithm for Solving Multimodal Multiobjective Optimization Problems
    Liu, Yue
    Cheng, Shi
    Wang, Xueping
    Shan, Yuyuan
    Lu, Hui
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2023, PT I, 2023, 13968 : 425 - 437
  • [29] Solving dynamic optimization infeasibility problems
    Almeida, Euclides
    Secchi, Argimiro R.
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 36 : 227 - 246
  • [30] Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems
    Yu, Xiang
    Zhang, Xueqing
    PLOS ONE, 2017, 12 (02):