The Riemann problem for a forward-backward parabolic equation

被引:16
作者
Gilding, Brian H. [2 ]
Tesei, Alberto [1 ]
机构
[1] Univ Roma La Sapienza, Fac Math Phys & Nat Sci, Dept Math Guido Castelnuovo, Rome, Italy
[2] Kuwait Univ, Fac Sci, Dept Math & Comp Sci, Safat 13060, Kuwait
关键词
Phase transition; Forward-backward parabolic equation; III posed; Riemann problem; Entropy weak solution; Discontinuity; Classification; Existence; Uniqueness; CONCENTRATION-DEPENDENT DIFFUSION; POROUS-MEDIA EQUATION; LARGE TIME BEHAVIOR; SIMILARITY SOLUTIONS; CONSERVATION-LAWS; REGULARIZATION;
D O I
10.1016/j.physd.2009.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Riemann problem for a forward-backward parabolic equation of interest in physical and biological models is studied. A complete classification of suitably defined entropy solutions is provided. Thereafter, the existence and uniqueness of a solution is proven, and its type is identified. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:291 / 311
页数:21
相关论文
共 35 条
[1]  
[Anonymous], RUSSIAN ACAD SCI DOK
[2]  
[Anonymous], 1999, J MATH SCI NEW YORK
[3]   SIMILARITY SOLUTIONS OF NONLINEAR DIFFUSION EQUATION [J].
ATKINSON, FV ;
PELETIER, LA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1974, 54 (04) :373-392
[4]  
ATKINSON FV, 1971, ARCH RATION MECH AN, V42, P369
[5]   A DEGENERATE PSEUDOPARABOLIC REGULARIZATION OF A NONLINEAR FORWARD-BACKWARD HEAT-EQUATION ARISING IN THE THEORY OF HEAT AND MASS-EXCHANGE IN STABLY STRATIFIED TURBULENT SHEAR-FLOW [J].
BARENBLATT, GI ;
BERTSCH, M ;
DALPASSO, R ;
UGHI, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (06) :1414-1439
[6]  
Bellettini G, 2006, DISCRETE CONT DYN-A, V16, P783
[7]   Large time behaviour of solutions of scalar viscous and nonviscous conservation laws [J].
Bertsch, M ;
Goncerzewicz, J ;
Hilhorst, D .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :83-87
[8]   KINETICS OF PHASE-SEPARATION IN THE PRESENCE OF SLOWLY RELAXING STRUCTURAL VARIABLES [J].
BINDER, K ;
FRISCH, HL ;
JACKLE, J .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (03) :1505-1512
[9]  
Brokate M., 1996, APPL MATH SCI, V121
[10]  
Dafermos C.M, 2009, Hyperbolic conservation laws in continuum physics