Parameter Influence in Structural Equation Modeling

被引:12
作者
Lee, Taehun [1 ]
MacCallum, Robert C. [2 ]
机构
[1] Univ Oklahoma, Norman, OK 73019 USA
[2] Univ N Carolina, Chapel Hill, NC USA
关键词
model fit; sensitivity analysis; parameter influence; structural equation modeling; parameter interpretation; CASE-DELETION DIAGNOSTICS; LOCAL INFLUENCE ANALYSIS; SENSITIVITY-ANALYSIS; COVARIANCE; LIKELIHOOD; MATRIX;
D O I
10.1080/10705511.2014.935255
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In applications of structural equation modeling (SEM), investigators obtain and interpret parameter estimates that are computed so as to produce optimal model fit. The obtained parameter estimates are optimal in the sense that model fit would deteriorate to some degree if any of those estimates were changed. If a small change of a parameter estimate has large influence on model fit, such a parameter can be called highly influential, whereas if a substantial perturbation of a parameter estimate has negligible influence on model fit, that parameter can be called uninfluential. This is the idea of parameter influence. This article covers 2 approaches to quantifying parameter influence. One existing approach determines the direction vector of parameter perturbation causing maximum deterioration in model fit. In this article, we propose a new approach for quantifying the influence of individual parameters on model fit. In this new approach, the influence of individual parameters is quantified as the degree of perturbation required to produce a prespecified value of change in model fit. Using empirical examples, we illustrate how these 2 methods can be effectively employed, complementing each other and as a complement to conventional approaches to interpretation of parameter estimates obtained in empirical data analyses.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 25 条
[1]  
[Anonymous], 1992, NUMERICAL RECIPES FO
[2]  
[Anonymous], 1980, Multivariate Analysis
[3]  
Browne M.W., 1993, Testing structural equation models, P131
[4]  
Browne M.W., 1995, HDB STAT MODELING SO, P185, DOI [10.1007/978-1-4899-1292-3_4, DOI 10.1007/978-1-4899-1292-3_4]
[5]   Local Influence in Structural Equation Models [J].
Cadigan, N. G. .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 1995, 2 (01) :13-30
[6]  
Cook R. D., 1986, J ROYAL STAT SOC B, V48, P1133
[7]   SENSITIVITY ANALYSIS IN FACTOR-ANALYSIS - DIFFERENCE BETWEEN USING COVARIANCE AND CORRELATION-MATRICES [J].
FUNG, WK ;
KWAN, CW .
PSYCHOMETRIKA, 1995, 60 (04) :607-614
[8]   ANALYSIS OF THE MULTITRAIT-MULTIMETHOD MATRIX BY CONFIRMATORY FACTOR-ANALYSIS [J].
KENNY, DA ;
KASHY, DA .
PSYCHOLOGICAL BULLETIN, 1992, 112 (01) :165-172
[9]   Assessing local influence for specific restricted likelihood: Application to factor analysis [J].
Kwan, CW ;
Fung, WK .
PSYCHOMETRIKA, 1998, 63 (01) :35-46
[10]   A critique of the correlated trait-correlated method and correlated uniqueness models for multitrait-multimethod data [J].
Lance, CE ;
Noble, CL ;
Scullen, SE .
PSYCHOLOGICAL METHODS, 2002, 7 (02) :228-244