On the Cauchy problem for the Zakharov system

被引:363
作者
Ginibre, J
Tsutsumi, Y
Velo, G
机构
[1] Univ Paris 11, Phys Theor & Hautes Energies Lab, CNRS, URA D0063,Lab Associe, F-91405 Orsay, France
[2] Univ Bologna, Dipartimento Fis, Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy
[4] ENS Cachan, CMLA, F-94235 Cachan, France
关键词
D O I
10.1006/jfan.1997.3148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the local Cauchy problem in time for the Zakharov system, (1.1) and (1.2), governing Langmuir turbulence, with initial data (u(0), n(0), partial derivative,n(0)) is an element of H-k + H-l + Hl-1, in arbitrary space dimension nu. We define a natural notion of criticality according to which the critical values of (k, l) are (nu/2 -3/2, nu/2-2), Using a method recently developed by Bourgain, we prove that the Zakharov system is locally well posed for a variety of values of (k, l). The results cover the whole subcritical range for nu greater than or equal to 4. For nu less than or equal to 3, they cover only part of it and the lowest admissible values are (k, l) = (1/2, 0) for nu = 2, 3 and (k, l) = (0, -1/2) for nu = 1. As a by product of the one dimensional result, we prove well-posedness of the Benney system, (1.14) and (1.15), governing the interaction of short and long waves for the same values of (k, l). (C) 1997 Academic Press.
引用
收藏
页码:384 / 436
页数:53
相关论文
共 32 条
[1]   EQUATIONS OF LANGMUIR TURBULENCE AND NONLINEAR SCHRODINGER-EQUATION - SMOOTHNESS AND APPROXIMATION [J].
ADDED, H ;
ADDED, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 79 (01) :183-210
[2]  
ADDED H, 1984, CR ACAD SCI I-MATH, V299, P551
[3]  
BEKIRANOV D, IN PRESS P AM MATH S
[4]  
BEKIRANOV D, 1996, ADV DIFFERENTIAL EQU, V1, P919
[5]  
BENNEY DJ, 1977, STUD APPL MATH, V56, P81
[6]  
BENNEY DJ, 1976, STUD APPL MATH, V55, P93
[7]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[8]  
BIRNIR B, 1996, ILL POSEDNESS IVP GE
[9]   Planck's law and light quantum hypothesis [J].
Bose .
ZEITSCHRIFT FUR PHYSIK, 1924, 26 :178-181
[10]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P107