Pluripotential Monge-Ampere flows in big cohomology classes

被引:3
作者
Dang, Quang-Tuan [1 ,2 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, CNRS, F-91405 Orsay, France
[2] Univ Toulouse, Inst Math Toulouse, CNRS, 118 Route Narbonne, F-31400 Toulouse, France
关键词
Parabolic Monge-Ampere equation; Big cohomology class; Kahler-Ricci flow; KAHLER-EINSTEIN METRICS; DIRICHLET PROBLEM; MINIMAL MODELS; RICCI FLOW; VARIETIES; EXISTENCE;
D O I
10.1016/j.jfa.2021.109373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study pluripotential complex Monge-Ampere flows in big cohomology classes on compact Kahler manifolds. We use the Perron method, considering pluripotential subsolutions to the Cauchy problem. We prove that, under natural assumptions on the data, the upper envelope of all subsolutions is continuous in space and semi-concave in time, and provides a unique pluripotential solution with such regularity. We apply this theory to study pluripotential Kahler-Ricci flows on compact Kahler manifolds of general type as well as on stable varieties (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:65
相关论文
共 50 条
  • [41] The obstacle problem for parabolic Monge-Ampere equation
    Lee, Ki-Ahm
    Lee, Taehun
    Park, Jinwan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 309 : 608 - 649
  • [42] REGULARITY OF SUBELLIPTIC MONGE-AMPERE EQUATIONS IN THE PLANE
    Guan, Pengfei
    Sawyer, Eric
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) : 4581 - 4591
  • [43] Remarks on the Homogeneous Complex Monge-Ampere Equation
    Guan, Pengfei
    COMPLEX ANALYSIS: SEVERAL COMPLEX VARIABLES AND CONNECTIONS WITH PDE THEORY AND GEOMETRY, 2010, : 175 - 185
  • [44] A VARIATIONAL APPROACH TO COMPLEX MONGE-AMPERE EQUATIONS
    Berman, Robert J.
    Boucksom, Sebastien
    Guedj, Vincent
    Zeriahi, Ahmed
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117): : 179 - 245
  • [45] SYMMETRY OF SOLUTIONS TO A CLASS OF MONGE-AMPERE EQUATIONS
    Cui, Fan
    Jian, Huaiyu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (03) : 1247 - 1259
  • [46] A variational approach to the quaternionic Monge-Ampere equation
    Wan, Dongrui
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (06) : 2125 - 2150
  • [47] Weak subsolutions to complex Monge-Ampere equations
    Guedj, Vincent
    Lu, Chinh H.
    Zeriahi, Ahmed
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (03) : 727 - 738
  • [48] Regularity of Solutions to the Quaternionic Monge-Ampere Equation
    Kolodziej, Slawomir
    Sroka, Marcin
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2852 - 2864
  • [49] Geometric estimates for complex Monge-Ampere equations
    Fu, Xin
    Guo, Bin
    Song, Jian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 765 : 69 - 99
  • [50] Ancient solutions of exterior problem of parabolic Monge-Ampere equations
    Zhou, Ziwei
    Gong, Shuyu
    Bao, Jiguang
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (04) : 1605 - 1624